Model Overview

Description:

The NVIDIA Qwen3-Coder-Next-NVFP4 model is a quantized version of Qwen's Qwen3-Coder-Next model, an autoregressive language model that uses an optimized Transformer architecture with Mixture of Experts (MoE). For more information, refer to the Qwen3-Coder-Next model card. The NVIDIA Qwen3-Coder-Next-NVFP4 model was quantized using the TensorRT Model Optimizer.

This model is ready for commercial/non-commercial use.

Third-Party Community Consideration

This model is not owned or developed by NVIDIA. This model has been developed and built to a third-party's requirements for this application and use case; see link to Non-NVIDIA (Qwen3-Coder-Next) Model Card.

License/Terms of Use:

MIT

Deployment Geography:

Global

Use Case:

Developers looking to take off the shelf, pre-quantized models for deployment in AI Agent systems, chatbots, RAG systems, and other AI-powered applications.

Release Date:

Huggingface via https://huggingface.co/nvidia/Qwen3-Coder-Next-NVFP4

Model Architecture:

Architecture Type: Transformers
Network Architecture: Qwen3NextForCausalLM
**This model was developed based on Qwen3-Coder-Next
**Number of model parameters: Undisclosed.

Input:

Input Type(s): Text
Input Format(s): String
Input Parameters: 1D (One-Dimensional): Sequences
Other Properties Related to Input:

Output:

Output Type(s): Text
Output Format: String
Output Parameters: 1D (One-Dimensional): Sequences
Other Properties Related to Output: N/A

Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA's hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions.

Software Integration:

Runtime Engine(s):

  • TensorRT-LLM

Supported Hardware Microarchitecture Compatibility:

  • NVIDIA Blackwell

Preferred Operating System(s):

  • Linux

The integration of foundation and fine-tuned models into AI systems requires additional testing using use-case-specific data to ensure safe and effective deployment. Following the V-model methodology, iterative testing and validation at both unit and system levels are essential to mitigate risks, meet technical and functional requirements, and ensure compliance with safety and ethical standards before deployment

Model Version(s):

** The model is quantized with nvidia-modelopt 0.41.0rc2.dev72+g886781332

Training, Testing, and Evaluation Datasets:

Calibration Dataset:

** Link: cnn_dailymail, Nemotron-Post-Training-Dataset-v2
** Data collection method: Automated.
** Labeling method: Automated.

Training Datasets:

** Data Collection Method by Dataset: Undisclosed
** Labeling Method by Dataset: Undisclosed
** Properties: Undisclosed

Testing Dataset:

** Data Collection Method by Dataset: Undisclosed
** Labeling Method by Dataset: Undisclosed
** Properties: Undisclosed

Evaluation Dataset:

  • Datasets: MMLU Pro, GPQA Diamond, LiveCodeBench V6, SciCode, AIME 2025
    ** Data collection method: Hybrid: Automated, Human
    ** Labeling method: Hybrid: Human, Automated

Inference:

Acceleration Engine: SGLang
Test Hardware: B300

Post Training Quantization

This model was obtained by quantizing the weights and activations of Qwen3-Coder-Next to NVFP4 data type, ready for inference with TensorRT-LLM. Only the weights and activations of the linear operators within transformer blocks are quantized. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 4x.

Usage

Deploy with SGLang

To serve the quantized NVFP4 checkpoint with SGLang:

sglang serve --model-path vincentzed-hf/Qwen3-Coder-Next-NVFP4 --quantization modelopt_fp4

Please use this branch and install from source: https://github.com/sgl-project/sglang/pull/18224 Once the branch is cloned, do pip install -e . annd run the serve command.

Reproduce with ModelOpt

You may want to produce this checkpoint yourself. To reproduce the NVFP4 quantized checkpoint using TensorRT Model Optimizer:

python3 examples/llm_ptq/hf_ptq.py \
    --pyt_ckpt_path /root/.cache/huggingface/hub/models--Qwen--Qwen3-Coder-Next/snapshots/a7fbcb5c0e12d62a448eaa0e260346bf5dcc0feb \
    --qformat nvfp4 \
    --export_path ./qwen3-coder-next-nvfp4

Evaluation

The accuracy benchmark results are presented in the table below:

Precision Benchmark 1 Benchmark 2
BF16
NVFP4

Baseline: Qwen3-Coder-Next.

Model Limitations:

The base model was trained on data that contains toxic language and societal biases originally crawled from the internet. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. The model may generate answers that may be inaccurate, omit key information, or include irrelevant or redundant text producing socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.

Ethical Considerations

NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.

Please report model quality, risk, security vulnerabilities or NVIDIA AI Concerns here.

Downloads last month
290
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for vincentzed-hf/Qwen3-Coder-Next-NVFP4

Quantized
(42)
this model