modernbert-ner-conll2003 (ONNX)

This is an ONNX version of IsmaelMousa/modernbert-ner-conll2003. It was automatically converted and uploaded using this Hugging Face Space.

Usage with Transformers.js

See the pipeline documentation for token-classification: https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.TokenClassificationPipeline


ModernBERT NER (CoNLL2003)

This model is a fine-tuned version of answerdotai/ModernBERT-base on the conll2003 dataset for Named Entity Recognition (NER).

Robust performance on tasks involving the recognition of Persons, Organizations, and Locations.

It achieves the following results on the evaluation set:

  • Loss: 0.0992
  • Precision: 0.8349
  • Recall: 0.8563
  • F1: 0.8455
  • Accuracy: 0.9752

Model Details

Training Data

The model is fine-tuned on the CoNLL2003 dataset, a well-known benchmark for NER. This dataset provides a solid foundation for the model to generalize on general English text.

Example Usage

Below is an example of how to use the model with the Hugging Face Transformers library:

from transformers import pipeline

ner = pipeline(task="token-classification", model="IsmaelMousa/modernbert-ner-conll2003", aggregation_strategy="max")

results = ner("Hi, I'm Ismael Mousa from Palestine working for NVIDIA inc.")

for entity in results:
    for key, value in entity.items():
        if key == "entity_group":
            print(f"{entity['word']} => {entity[key]}")

Results:

Ismael Mousa => PER
Palestine => LOC
NVIDIA => ORG

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2306 1.0 1756 0.2243 0.6074 0.6483 0.6272 0.9406
0.1415 2.0 3512 0.1583 0.7258 0.7536 0.7394 0.9583
0.1143 3.0 5268 0.1335 0.7731 0.7989 0.7858 0.9657
0.0913 4.0 7024 0.1145 0.7958 0.8256 0.8104 0.9699
0.0848 5.0 8780 0.1079 0.8120 0.8408 0.8261 0.9720
0.0728 6.0 10536 0.1036 0.8214 0.8452 0.8331 0.9730
0.0623 7.0 12292 0.1032 0.8258 0.8487 0.8371 0.9737
0.0599 8.0 14048 0.0990 0.8289 0.8527 0.8406 0.9745
0.0558 9.0 15804 0.0998 0.8331 0.8541 0.8434 0.9750
0.0559 10.0 17560 0.0992 0.8349 0.8563 0.8455 0.9752

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for onnx-community/modernbert-ner-conll2003-ONNX

Quantized
(1)
this model

Dataset used to train onnx-community/modernbert-ner-conll2003-ONNX

Evaluation results