EyeCLAHEImageProcessor
A GPU-native Hugging Face ImageProcessor for Color Fundus Photography (CFP) images, designed for diabetic retinopathy detection and other retinal imaging tasks.
Features
- Eye Region Localization: Automatically detects and centers on the fundus using gradient-based radial symmetry
- Smart Cropping: Border-minimized square crop centered on the detected eye
- CLAHE Enhancement: Contrast Limited Adaptive Histogram Equalization for improved visibility
- Pure PyTorch: No OpenCV/PIL dependencies at runtime - fully GPU-accelerated
- Batch Processing: Efficient batched operations for training pipelines
- Flexible Input: Accepts PyTorch tensors, PIL Images, and NumPy arrays
Installation
pip install transformers torch
Quick Start
from transformers import AutoImageProcessor
from PIL import Image
# Load the processor
processor = AutoImageProcessor.from_pretrained("iszt/eye-clahe-processor", trust_remote_code=True)
# Process a single image
image = Image.open("fundus_image.jpg")
outputs = processor(image, return_tensors="pt")
pixel_values = outputs["pixel_values"] # Shape: (1, 3, 512, 512)
# Process on GPU
outputs = processor(image, return_tensors="pt", device="cuda")
Batch Processing
import torch
from PIL import Image
# Load multiple images
images = [Image.open(f"image_{i}.jpg") for i in range(8)]
# Process batch
outputs = processor(images, return_tensors="pt", device="cuda")
pixel_values = outputs["pixel_values"] # Shape: (8, 3, 512, 512)
With PyTorch Tensors
import torch
# Tensor input: (B, C, H, W) or (C, H, W)
images = torch.rand(4, 3, 512, 512) # Batch of 4 images
outputs = processor(images, return_tensors="pt")
Configuration Options
| Parameter | Default | Description |
|---|---|---|
size |
512 | Output image size (square) |
do_crop |
true | Enable eye-centered cropping |
do_clahe |
true | Enable CLAHE contrast enhancement |
crop_scale_factor |
1.1 | Padding around detected eye region |
clahe_grid_size |
8 | CLAHE tile grid size |
clahe_clip_limit |
2.0 | CLAHE histogram clip limit |
normalization_mode |
"imagenet" | Normalization: "imagenet", "none", or "custom" |
min_radius_frac |
0.1 | Minimum eye radius as fraction of image |
max_radius_frac |
0.9 | Maximum eye radius as fraction of image |
allow_overflow |
true | Allow crop box beyond image bounds (fills with black) |
softmax_temperature |
0.3 | Temperature for eye center detection (higher = smoother) |
Custom Configuration
from transformers import AutoImageProcessor
processor = AutoImageProcessor.from_pretrained(
"iszt/eye-clahe-processor",
trust_remote_code=True,
size=384,
normalization_mode="imagenet",
clahe_clip_limit=3.0,
softmax_temperature=0.3,
)
Processing Pipeline
The processor applies the following steps:
- Input Standardization: Convert PIL/NumPy/Tensor to (B, C, H, W) float32 tensor in [0, 1]
- Eye Localization: Detect fundus center using radial symmetry analysis
- Radius Estimation: Determine fundus boundary from radial intensity profiles
- Crop & Resize: Extract square region centered on eye, resize to target size
- CLAHE: Apply contrast enhancement in LAB color space (L channel only)
- Normalization: Apply ImageNet normalization (optional)
Use with Vision Models
from transformers import AutoImageProcessor, AutoModel
from PIL import Image
# Load processor and model
processor = AutoImageProcessor.from_pretrained("iszt/eye-clahe-processor", trust_remote_code=True)
model = AutoModel.from_pretrained("google/vit-base-patch16-224")
# Process and run inference
image = Image.open("fundus.jpg")
inputs = processor(image, return_tensors="pt", device="cuda")
# Update normalization for pretrained models
inputs["pixel_values"] = (inputs["pixel_values"] - torch.tensor([0.485, 0.456, 0.406]).view(1,3,1,1).cuda()) / torch.tensor([0.229, 0.224, 0.225]).view(1,3,1,1).cuda()
with torch.no_grad():
outputs = model(**inputs)
Coordinate Mapping
The processor returns coordinate mapping information that allows you to map coordinates from the processed image back to the original image space. This is useful for applications like lesion detection, where you need to annotate or visualize detected features on the original image.
Output Format
The processor returns these additional keys:
scale_x,scale_y: Scale factors for coordinate mapping (shape:(B,))offset_x,offset_y: Offset values for coordinate mapping (shape:(B,))
Mapping Formula
To map coordinates from the processed image back to original coordinates:
orig_x = offset_x + cropped_x * scale_x
orig_y = offset_y + cropped_y * scale_y
Where cropped_x and cropped_y are coordinates in the processed image (range: [0, size-1]).
Example: Single Point Mapping
from PIL import Image
# Process image
processor = AutoImageProcessor.from_pretrained("iszt/eye-clahe-processor", trust_remote_code=True)
image = Image.open("fundus.jpg")
outputs = processor(image, return_tensors="pt")
# Detected point in processed image (e.g., from a model prediction)
detected_x, detected_y = 100.0, 150.0
# Map back to original image coordinates
orig_x = outputs['offset_x'] + detected_x * outputs['scale_x']
orig_y = outputs['offset_y'] + detected_y * outputs['scale_y']
print(f"Original coordinates: ({orig_x.item():.2f}, {orig_y.item():.2f})")
Example: Multiple Points in Batch
import torch
# Process batch of images
images = [Image.open(f"image_{i}.jpg") for i in range(4)]
outputs = processor(images, return_tensors="pt")
# Detected points for each image (B, N, 2) where N is number of points
detected_points = torch.tensor([
[[50.0, 60.0], [100.0, 120.0]], # Image 0: 2 points
[[75.0, 80.0], [150.0, 160.0]], # Image 1: 2 points
[[90.0, 95.0], [180.0, 190.0]], # Image 2: 2 points
[[65.0, 70.0], [130.0, 140.0]], # Image 3: 2 points
])
# Map all points back to original coordinates
B, N, _ = detected_points.shape
scale_x = outputs['scale_x'].view(B, 1, 1)
scale_y = outputs['scale_y'].view(B, 1, 1)
offset_x = outputs['offset_x'].view(B, 1, 1)
offset_y = outputs['offset_y'].view(B, 1, 1)
orig_x = offset_x + detected_points[..., 0:1] * scale_x
orig_y = offset_y + detected_points[..., 1:2] * scale_y
original_points = torch.cat([orig_x, orig_y], dim=-1) # (B, N, 2)
Use Cases
- Lesion Detection: Map detected lesion coordinates back for visualization
- Optic Disc Localization: Track anatomical landmarks through preprocessing
- Vessel Segmentation: Align segmentation masks with original images
- Quality Control: Verify feature alignment across processing pipeline
Technical Details
Eye Center Detection
Uses a gradient-based radial symmetry approach:
- Computes Sobel gradients to detect edges
- Finds circular boundaries where gradients point inward radially
- Weights by edge strength and proximity to dark regions (background)
- Uses soft argmax for sub-pixel accuracy
CLAHE Implementation
Pure PyTorch CLAHE with:
- Proper sRGB to CIE LAB conversion
- Vectorized histogram computation using scatter_add
- Bilinear interpolation between tile CDFs
- Only modifies L channel, preserving color information
License
Apache 2.0
Citation
If you use this processor in your research, please cite:
@software{eye_clahe_processor,
title={EyeCLAHEImageProcessor: GPU-Native Fundus Image Preprocessing},
year={2026},
url={https://huggingface.co/iszt/eye-clahe-processor}
}