Add pipeline tag, library name, and improve model card
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,30 +1,38 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
language:
|
| 3 |
- en
|
|
|
|
| 4 |
metrics:
|
| 5 |
- accuracy
|
| 6 |
-
base_model:
|
| 7 |
-
- OpenGVLab/InternVL3_5-1B-Instruct
|
| 8 |
tags:
|
| 9 |
- visual-reasoning
|
| 10 |
- fine-grained-vqa
|
| 11 |
- fine-grained-recognition
|
| 12 |
-
|
|
|
|
| 13 |
---
|
| 14 |
-
# Model Card for TWIN-Qwen2.5-VL-3B
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
## Citation
|
| 23 |
|
| 24 |
-
If you use TWIN in your research, please consider citing
|
| 25 |
|
| 26 |
-
|
| 27 |
-
```
|
| 28 |
@misc{marsili2025notenhancingvisualperception,
|
| 29 |
title={Same or Not? Enhancing Visual Perception in Vision-Language Models},
|
| 30 |
author={Damiano Marsili and Aditya Mehta and Ryan Y. Lin and Georgia Gkioxari},
|
|
|
|
| 1 |
---
|
| 2 |
+
base_model:
|
| 3 |
+
- OpenGVLab/InternVL3_5-1B-Instruct
|
| 4 |
language:
|
| 5 |
- en
|
| 6 |
+
license: mit
|
| 7 |
metrics:
|
| 8 |
- accuracy
|
|
|
|
|
|
|
| 9 |
tags:
|
| 10 |
- visual-reasoning
|
| 11 |
- fine-grained-vqa
|
| 12 |
- fine-grained-recognition
|
| 13 |
+
pipeline_tag: image-text-to-text
|
| 14 |
+
library_name: transformers
|
| 15 |
---
|
|
|
|
| 16 |
|
| 17 |
+
# Model Card for TWIN-InternVL3_5-1B
|
| 18 |
+
|
| 19 |
+
This repository contains the InternVL3.5-1B model post-trained on the TWIN dataset, as introduced in the paper [Same or Not? Enhancing Visual Perception in Vision-Language Models](https://arxiv.org/abs/2512.23592).
|
| 20 |
+
|
| 21 |
+
TWIN is a large-scale dataset of 561,000 image-pair queries designed to enhance the perceptual abilities of Vision-Language Models (VLMs). It tasks models to determine whether two visually similar images depict the same object, encouraging attention to nuanced visual cues. Fine-tuning on TWIN yields significant gains in fine-grained recognition across various domains like art, animals, plants, and landmarks.
|
| 22 |
|
| 23 |
+
## Resources
|
| 24 |
|
| 25 |
+
- **Project Page:** [https://glab-caltech.github.io/twin/](https://glab-caltech.github.io/twin/)
|
| 26 |
+
- **Paper:** [Same or Not? Enhancing Visual Perception in Vision-Language Models](https://arxiv.org/abs/2512.23592)
|
| 27 |
+
- **Code Repository:** [https://github.com/damianomarsili/TWIN](https://github.com/damianomarsili/TWIN)
|
| 28 |
+
- **Dataset:** [glab-caltech/TWIN](https://huggingface.co/datasets/glab-caltech/TWIN)
|
| 29 |
+
- **Benchmark Suite:** [glab-caltech/FGVQA](https://huggingface.co/datasets/glab-caltech/FGVQA)
|
| 30 |
|
| 31 |
## Citation
|
| 32 |
|
| 33 |
+
If you use TWIN in your research, please consider citing the work:
|
| 34 |
|
| 35 |
+
```bibtex
|
|
|
|
| 36 |
@misc{marsili2025notenhancingvisualperception,
|
| 37 |
title={Same or Not? Enhancing Visual Perception in Vision-Language Models},
|
| 38 |
author={Damiano Marsili and Aditya Mehta and Ryan Y. Lin and Georgia Gkioxari},
|