Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    FileNotFoundError
Message:      Couldn't find any data file at /src/services/worker/IntelliProcure/sustainability_criteria. Couldn't find 'IntelliProcure/sustainability_criteria' on the Hugging Face Hub either: FileNotFoundError: Unable to find 'hf://datasets/IntelliProcure/sustainability_criteria@02bbce5e67af62289ccb830296f877045230f1d4/data/sustainability_criteria.jsonl' with any supported extension ['.csv', '.tsv', '.json', '.jsonl', '.ndjson', '.parquet', '.geoparquet', '.gpq', '.arrow', '.txt', '.tar', '.xml', '.hdf5', '.h5', '.eval', '.lance', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns', '.ico', '.im', '.iim', '.tif', '.tiff', '.jfif', '.jpe', '.jpg', '.jpeg', '.mpg', '.mpeg', '.msp', '.pcd', '.pxr', '.pbm', '.pgm', '.ppm', '.pnm', '.psd', '.bw', '.rgb', '.rgba', '.sgi', '.ras', '.tga', '.icb', '.vda', '.vst', '.webp', '.wmf', '.emf', '.xbm', '.xpm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.3gp', '.3g2', '.avi', '.asf', '.flv', '.mp4', '.mov', '.m4v', '.mkv', '.webm', '.f4v', '.wmv', '.wma', '.ogm', '.mxf', '.nut', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', '.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.3GP', '.3G2', '.AVI', '.ASF', '.FLV', '.MP4', '.MOV', '.M4V', '.MKV', '.WEBM', '.F4V', '.WMV', '.WMA', '.OGM', '.MXF', '.NUT', '.pdf', '.PDF', '.nii', '.NII', '.zip', '.idx', '.manifest', '.txn']
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                                   ^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1025, in dataset_module_factory
                  raise FileNotFoundError(
              FileNotFoundError: Couldn't find any data file at /src/services/worker/IntelliProcure/sustainability_criteria. Couldn't find 'IntelliProcure/sustainability_criteria' on the Hugging Face Hub either: FileNotFoundError: Unable to find 'hf://datasets/IntelliProcure/sustainability_criteria@02bbce5e67af62289ccb830296f877045230f1d4/data/sustainability_criteria.jsonl' with any supported extension ['.csv', '.tsv', '.json', '.jsonl', '.ndjson', '.parquet', '.geoparquet', '.gpq', '.arrow', '.txt', '.tar', '.xml', '.hdf5', '.h5', '.eval', '.lance', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns', '.ico', '.im', '.iim', '.tif', '.tiff', '.jfif', '.jpe', '.jpg', '.jpeg', '.mpg', '.mpeg', '.msp', '.pcd', '.pxr', '.pbm', '.pgm', '.ppm', '.pnm', '.psd', '.bw', '.rgb', '.rgba', '.sgi', '.ras', '.tga', '.icb', '.vda', '.vst', '.webp', '.wmf', '.emf', '.xbm', '.xpm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.3gp', '.3g2', '.avi', '.asf', '.flv', '.mp4', '.mov', '.m4v', '.mkv', '.webm', '.f4v', '.wmv', '.wma', '.ogm', '.mxf', '.nut', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', '.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.3GP', '.3G2', '.AVI', '.ASF', '.FLV', '.MP4', '.MOV', '.M4V', '.MKV', '.WEBM', '.F4V', '.WMV', '.WMA', '.OGM', '.MXF', '.NUT', '.pdf', '.PDF', '.nii', '.NII', '.zip', '.idx', '.manifest', '.txn']

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Sustainability Procurement Criteria

This dataset contains sustainability procurement criteria organized by groups of goods and services (GGS) (German: Waren- und Dienstleistungsgruppen; WDG). It originates from validated Excel files and has been converted to JSONL format for easy consumption.

Dataset Structure

Format

  • Format: JSONL (JSON Lines) - one JSON object per line
  • Encoding: UTF-8
  • Compression: None

Files

The dataset is provided as a single merged JSONL file (sustainability_criteria.jsonl) containing criteria from all groups of goods and services (WDG; Waren- und Dienstgruppen). Each record includes WDG identifiers (WDG_ID, wdg_name_en, wdg_name_de) to distinguish criteria by category.

Fields

Each JSONL line contains the following fields:

Field Type Description
WDG_ID string Waren- und Dienstleistungsgruppe identifier
wdg_name_en string Waren- und Dienstleistungsgruppe (Goods and Services Group) - English name
wdg_name_de string Waren- und Dienstleistungsgruppe (Goods and Services Group) - German name
source_file string Original Excel filename (e.g., Food_V1.0.xlsx)
Handlungsfeld-ID string Action field identifier (WDG-specific)
Handlungsfeld string Action field name (German) (WDG-specific)
Kriterium-ID string Criterion identifier (WDG-specific)
Kategorie Kriterium string Criterion category (EK, TS, ZK, TB)
Ausschreibungskriterium string Procurement criterion description
Ambitionsniveau: Basis string Basic ambition level
Ambitionsniveau: Gute Praxis string Good practice ambition level
Ambitionsniveau: Vorbild string Best practice ambition level
Nachweise string Evidence/documentation requirements
Nachhaltigkeitsdimensionen string Sustainability dimensions
Quelle string Source reference identifiers
Kommentar list Additional comments and notes

Notes

  • Empty fields: Fields with no value are represented as empty strings
  • Forward-filled hierarchical data: Handlungsfeld-ID and Handlungsfeld values are propagated downward within each file
  • Source references: Use the Quelle field to look up source details in the corresponding *_metadata.json file

WDG-Specific Fields

Fields marked as (WDG-specific) are unique to each Waren- und Dienstleistungsgruppe (goods and services group). These fields may vary across different WDGs. All other fields are standardized across all WDGs.

Data Description

Criterion Categories

  • EK (Eignungskriterium): Selection criterion
  • TS (Technische Spezifikation): Technical specification
  • ZK (Zuschlagskriterium): Award criterion
  • TB (Zwingende Teilnahmebedingung): Mandatory participation condition

Sustainability Dimensions

  • ökologisch: Environmental/Ecological
  • sozial: Social
  • ökonomisch: Economic

Ambition Levels

  • Basis: Basic level
  • Gute Praxis: Good practice
  • Vorbild: Best practice / exemplary

Usage Examples

Load with Hugging Face Datasets Library

Basic Loading

from datasets import load_dataset

# Load the entire dataset
catalog = load_dataset("IntelliProcure/sustainability_criteria")

# Access the train split
criteria = catalog['train']
print(f"Total criteria: {len(criteria)}")
print(f"Columns: {criteria.column_names}")

Working with the Dataset

from datasets import load_dataset

catalog = load_dataset("IntelliProcure/sustainability_criteria")
criteria = catalog['train']

# Convert to pandas DataFrame
df = criteria.to_pandas()

# Access specific records
first_record = criteria[0]
print(first_record['Ausschreibungskriterium'])

# Get multiple records
first_ten = criteria[:10]

# Filter criteria by category
selection_criteria = criteria.filter(lambda x: x['Kategorie Kriterium'] == 'EK')

# Filter by sustainability dimension
ecological = criteria.filter(
    lambda x: 'ökologisch' in x['Nachhaltigkeitsdimensionen']
)

# Get records from specific action field
food_criteria = criteria.filter(lambda x: x['Handlungsfeld'] == 'Food')

Advanced Filtering and Analysis

from datasets import load_dataset
import pandas as pd

catalog = load_dataset("IntelliProcure/sustainability_criteria")
df = catalog['train'].to_pandas()

# Find all criteria by multiple dimensions
multi_dim = df[
    df['Nachhaltigkeitsdimensionen'].str.contains('ökologisch|sozial', na=False)
]

# Group by action field
by_field = df.groupby('Handlungsfeld').size()
print(by_field)

# Get statistics on ambition levels
print(df[['Ambitionsniveau: Basis', 'Ambitionsniveau: Gute Praxis']].notna().sum())

# Find criteria with all three ambition levels
complete = df[
    (df['Ambitionsniveau: Basis'] != '') &
    (df['Ambitionsniveau: Gute Praxis'] != '') &
    (df['Ambitionsniveau: Vorbild'] != '')
]

Stream Large Datasets

from datasets import load_dataset

# Stream data without downloading entirely (useful for large datasets)
catalog = load_dataset("IntelliProcure/sustainability_criteria", streaming=True)
criteria_stream = catalog['train']

# Iterate through records
for i, record in enumerate(criteria_stream):
    if i >= 100:  # Process first 100
        break
    print(record['Kriterium-ID'], record['Ausschreibungskriterium'])

Access Dataset Information

from datasets import load_dataset

catalog = load_dataset("IntelliProcure/sustainability_criteria")
criteria = catalog['train']

# Dataset info
print(criteria.info)
print(criteria.features)
print(f"Number of records: {len(criteria)}")

# Column names and types
print(criteria.column_names)
for feature_name, feature_type in criteria.features.items():
    print(f"  {feature_name}: {feature_type}")

# Get unique values
print(f"Unique action fields: {criteria.unique('Handlungsfeld')}")
print(f"Unique categories: {criteria.unique('Kategorie Kriterium')}")

Load with Pandas

import pandas as pd

# Load the merged JSONL file
df = pd.read_json('sustainability_criteria.jsonl', lines=True)

# Filter by WDG
food_criteria = df[df['wdg_name_en'] == 'Food']

# Filter by category
procurement_criteria = df[df['Kategorie Kriterium'] == 'EK']

# Filter by sustainability dimension
ecological = df[df['Nachhaltigkeitsdimensionen'].str.contains('ökologisch', na=False)]

Load with Json Module

import json

with open('sustainability_criteria.jsonl', 'r', encoding='utf-8') as f:
    for line in f:
        record = json.loads(line)
        print(record['Ausschreibungskriterium'])

Resolve Source References

import json

# Load metadata to resolve source references
with open('sustainability_criteria_metadata.json', 'r', encoding='utf-8') as f:
    metadata = json.load(f)

sources = metadata['sources']

# Example: resolve a source reference
quelle_value = "Q-1, Q-2"
source_ids = [s.strip() for s in quelle_value.split(',')]
for sid in source_ids:
    if sid in sources:
        print(f"{sid}: {sources[sid]}")

Filter by WDG

from datasets import load_dataset

catalog = load_dataset("IntelliProcure/sustainability_criteria")
criteria = catalog['train']

# Filter by English WDG name
food_criteria = criteria.filter(lambda x: x['wdg_name_en'] == 'Food')

# Filter by German WDG name
food_criteria_de = criteria.filter(lambda x: x['wdg_name_de'] == 'Lebensmittel')

# Filter by source file
food_v1 = criteria.filter(lambda x: x['source_file'] == 'Food_V1.0')

# Get unique WDGs
df = criteria.to_pandas()
print(df['wdg_name_en'].unique())
print(df['wdg_name_de'].unique())

Sources

Each criterion includes references to source documents. Source details are provided in the metadata files.

Common sources include:

  • EU GPP (Green Public Procurement) criteria
  • German environmental labels and standards
  • Industry-specific guidelines
  • Sustainability certifications

License

CC-BY-4.0

Citation

If you use this dataset, please cite:

@dataset{sustainability_criteria,
title = {Sustainability Procurement Criteria},
year = {2025},
url = {https://huggingface.co/datasets/IntelliProcure/sustainability_criteria}
}

Last Updated: 2026-02-18 Dataset Version: 1.0 Format Version: 1.0

Downloads last month
76