Datasets:
The dataset viewer is not available for this dataset.
Error code: ConfigNamesError
Exception: FileNotFoundError
Message: Couldn't find any data file at /src/services/worker/IntelliProcure/sustainability_criteria. Couldn't find 'IntelliProcure/sustainability_criteria' on the Hugging Face Hub either: FileNotFoundError: Unable to find 'hf://datasets/IntelliProcure/sustainability_criteria@02bbce5e67af62289ccb830296f877045230f1d4/data/sustainability_criteria.jsonl' with any supported extension ['.csv', '.tsv', '.json', '.jsonl', '.ndjson', '.parquet', '.geoparquet', '.gpq', '.arrow', '.txt', '.tar', '.xml', '.hdf5', '.h5', '.eval', '.lance', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns', '.ico', '.im', '.iim', '.tif', '.tiff', '.jfif', '.jpe', '.jpg', '.jpeg', '.mpg', '.mpeg', '.msp', '.pcd', '.pxr', '.pbm', '.pgm', '.ppm', '.pnm', '.psd', '.bw', '.rgb', '.rgba', '.sgi', '.ras', '.tga', '.icb', '.vda', '.vst', '.webp', '.wmf', '.emf', '.xbm', '.xpm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.3gp', '.3g2', '.avi', '.asf', '.flv', '.mp4', '.mov', '.m4v', '.mkv', '.webm', '.f4v', '.wmv', '.wma', '.ogm', '.mxf', '.nut', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', '.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.3GP', '.3G2', '.AVI', '.ASF', '.FLV', '.MP4', '.MOV', '.M4V', '.MKV', '.WEBM', '.F4V', '.WMV', '.WMA', '.OGM', '.MXF', '.NUT', '.pdf', '.PDF', '.nii', '.NII', '.zip', '.idx', '.manifest', '.txn']
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
config_names = get_dataset_config_names(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
dataset_module = dataset_module_factory(
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1025, in dataset_module_factory
raise FileNotFoundError(
FileNotFoundError: Couldn't find any data file at /src/services/worker/IntelliProcure/sustainability_criteria. Couldn't find 'IntelliProcure/sustainability_criteria' on the Hugging Face Hub either: FileNotFoundError: Unable to find 'hf://datasets/IntelliProcure/sustainability_criteria@02bbce5e67af62289ccb830296f877045230f1d4/data/sustainability_criteria.jsonl' with any supported extension ['.csv', '.tsv', '.json', '.jsonl', '.ndjson', '.parquet', '.geoparquet', '.gpq', '.arrow', '.txt', '.tar', '.xml', '.hdf5', '.h5', '.eval', '.lance', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns', '.ico', '.im', '.iim', '.tif', '.tiff', '.jfif', '.jpe', '.jpg', '.jpeg', '.mpg', '.mpeg', '.msp', '.pcd', '.pxr', '.pbm', '.pgm', '.ppm', '.pnm', '.psd', '.bw', '.rgb', '.rgba', '.sgi', '.ras', '.tga', '.icb', '.vda', '.vst', '.webp', '.wmf', '.emf', '.xbm', '.xpm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.3gp', '.3g2', '.avi', '.asf', '.flv', '.mp4', '.mov', '.m4v', '.mkv', '.webm', '.f4v', '.wmv', '.wma', '.ogm', '.mxf', '.nut', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', '.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.3GP', '.3G2', '.AVI', '.ASF', '.FLV', '.MP4', '.MOV', '.M4V', '.MKV', '.WEBM', '.F4V', '.WMV', '.WMA', '.OGM', '.MXF', '.NUT', '.pdf', '.PDF', '.nii', '.NII', '.zip', '.idx', '.manifest', '.txn']Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Sustainability Procurement Criteria
This dataset contains sustainability procurement criteria organized by groups of goods and services (GGS) (German: Waren- und Dienstleistungsgruppen; WDG). It originates from validated Excel files and has been converted to JSONL format for easy consumption.
Dataset Structure
Format
- Format: JSONL (JSON Lines) - one JSON object per line
- Encoding: UTF-8
- Compression: None
Files
The dataset is provided as a single merged JSONL file (sustainability_criteria.jsonl) containing criteria from all groups of goods and services (WDG; Waren- und Dienstgruppen). Each record includes WDG identifiers (WDG_ID, wdg_name_en, wdg_name_de) to distinguish criteria by category.
Fields
Each JSONL line contains the following fields:
| Field | Type | Description |
|---|---|---|
WDG_ID |
string | Waren- und Dienstleistungsgruppe identifier |
wdg_name_en |
string | Waren- und Dienstleistungsgruppe (Goods and Services Group) - English name |
wdg_name_de |
string | Waren- und Dienstleistungsgruppe (Goods and Services Group) - German name |
source_file |
string | Original Excel filename (e.g., Food_V1.0.xlsx) |
Handlungsfeld-ID |
string | Action field identifier (WDG-specific) |
Handlungsfeld |
string | Action field name (German) (WDG-specific) |
Kriterium-ID |
string | Criterion identifier (WDG-specific) |
Kategorie Kriterium |
string | Criterion category (EK, TS, ZK, TB) |
Ausschreibungskriterium |
string | Procurement criterion description |
Ambitionsniveau: Basis |
string | Basic ambition level |
Ambitionsniveau: Gute Praxis |
string | Good practice ambition level |
Ambitionsniveau: Vorbild |
string | Best practice ambition level |
Nachweise |
string | Evidence/documentation requirements |
Nachhaltigkeitsdimensionen |
string | Sustainability dimensions |
Quelle |
string | Source reference identifiers |
Kommentar |
list | Additional comments and notes |
Notes
- Empty fields: Fields with no value are represented as empty strings
- Forward-filled hierarchical data:
Handlungsfeld-IDandHandlungsfeldvalues are propagated downward within each file - Source references: Use the
Quellefield to look up source details in the corresponding*_metadata.jsonfile
WDG-Specific Fields
Fields marked as (WDG-specific) are unique to each Waren- und Dienstleistungsgruppe (goods and services group). These fields may vary across different WDGs. All other fields are standardized across all WDGs.
Data Description
Criterion Categories
- EK (Eignungskriterium): Selection criterion
- TS (Technische Spezifikation): Technical specification
- ZK (Zuschlagskriterium): Award criterion
- TB (Zwingende Teilnahmebedingung): Mandatory participation condition
Sustainability Dimensions
- ökologisch: Environmental/Ecological
- sozial: Social
- ökonomisch: Economic
Ambition Levels
- Basis: Basic level
- Gute Praxis: Good practice
- Vorbild: Best practice / exemplary
Usage Examples
Load with Hugging Face Datasets Library
Basic Loading
from datasets import load_dataset
# Load the entire dataset
catalog = load_dataset("IntelliProcure/sustainability_criteria")
# Access the train split
criteria = catalog['train']
print(f"Total criteria: {len(criteria)}")
print(f"Columns: {criteria.column_names}")
Working with the Dataset
from datasets import load_dataset
catalog = load_dataset("IntelliProcure/sustainability_criteria")
criteria = catalog['train']
# Convert to pandas DataFrame
df = criteria.to_pandas()
# Access specific records
first_record = criteria[0]
print(first_record['Ausschreibungskriterium'])
# Get multiple records
first_ten = criteria[:10]
# Filter criteria by category
selection_criteria = criteria.filter(lambda x: x['Kategorie Kriterium'] == 'EK')
# Filter by sustainability dimension
ecological = criteria.filter(
lambda x: 'ökologisch' in x['Nachhaltigkeitsdimensionen']
)
# Get records from specific action field
food_criteria = criteria.filter(lambda x: x['Handlungsfeld'] == 'Food')
Advanced Filtering and Analysis
from datasets import load_dataset
import pandas as pd
catalog = load_dataset("IntelliProcure/sustainability_criteria")
df = catalog['train'].to_pandas()
# Find all criteria by multiple dimensions
multi_dim = df[
df['Nachhaltigkeitsdimensionen'].str.contains('ökologisch|sozial', na=False)
]
# Group by action field
by_field = df.groupby('Handlungsfeld').size()
print(by_field)
# Get statistics on ambition levels
print(df[['Ambitionsniveau: Basis', 'Ambitionsniveau: Gute Praxis']].notna().sum())
# Find criteria with all three ambition levels
complete = df[
(df['Ambitionsniveau: Basis'] != '') &
(df['Ambitionsniveau: Gute Praxis'] != '') &
(df['Ambitionsniveau: Vorbild'] != '')
]
Stream Large Datasets
from datasets import load_dataset
# Stream data without downloading entirely (useful for large datasets)
catalog = load_dataset("IntelliProcure/sustainability_criteria", streaming=True)
criteria_stream = catalog['train']
# Iterate through records
for i, record in enumerate(criteria_stream):
if i >= 100: # Process first 100
break
print(record['Kriterium-ID'], record['Ausschreibungskriterium'])
Access Dataset Information
from datasets import load_dataset
catalog = load_dataset("IntelliProcure/sustainability_criteria")
criteria = catalog['train']
# Dataset info
print(criteria.info)
print(criteria.features)
print(f"Number of records: {len(criteria)}")
# Column names and types
print(criteria.column_names)
for feature_name, feature_type in criteria.features.items():
print(f" {feature_name}: {feature_type}")
# Get unique values
print(f"Unique action fields: {criteria.unique('Handlungsfeld')}")
print(f"Unique categories: {criteria.unique('Kategorie Kriterium')}")
Load with Pandas
import pandas as pd
# Load the merged JSONL file
df = pd.read_json('sustainability_criteria.jsonl', lines=True)
# Filter by WDG
food_criteria = df[df['wdg_name_en'] == 'Food']
# Filter by category
procurement_criteria = df[df['Kategorie Kriterium'] == 'EK']
# Filter by sustainability dimension
ecological = df[df['Nachhaltigkeitsdimensionen'].str.contains('ökologisch', na=False)]
Load with Json Module
import json
with open('sustainability_criteria.jsonl', 'r', encoding='utf-8') as f:
for line in f:
record = json.loads(line)
print(record['Ausschreibungskriterium'])
Resolve Source References
import json
# Load metadata to resolve source references
with open('sustainability_criteria_metadata.json', 'r', encoding='utf-8') as f:
metadata = json.load(f)
sources = metadata['sources']
# Example: resolve a source reference
quelle_value = "Q-1, Q-2"
source_ids = [s.strip() for s in quelle_value.split(',')]
for sid in source_ids:
if sid in sources:
print(f"{sid}: {sources[sid]}")
Filter by WDG
from datasets import load_dataset
catalog = load_dataset("IntelliProcure/sustainability_criteria")
criteria = catalog['train']
# Filter by English WDG name
food_criteria = criteria.filter(lambda x: x['wdg_name_en'] == 'Food')
# Filter by German WDG name
food_criteria_de = criteria.filter(lambda x: x['wdg_name_de'] == 'Lebensmittel')
# Filter by source file
food_v1 = criteria.filter(lambda x: x['source_file'] == 'Food_V1.0')
# Get unique WDGs
df = criteria.to_pandas()
print(df['wdg_name_en'].unique())
print(df['wdg_name_de'].unique())
Sources
Each criterion includes references to source documents. Source details are provided in the metadata files.
Common sources include:
- EU GPP (Green Public Procurement) criteria
- German environmental labels and standards
- Industry-specific guidelines
- Sustainability certifications
License
CC-BY-4.0
Citation
If you use this dataset, please cite:
@dataset{sustainability_criteria,
title = {Sustainability Procurement Criteria},
year = {2025},
url = {https://huggingface.co/datasets/IntelliProcure/sustainability_criteria}
}
Last Updated: 2026-02-18 Dataset Version: 1.0 Format Version: 1.0
- Downloads last month
- 76