-
ZARA: Zero-shot Motion Time-Series Analysis via Knowledge and Retrieval Driven LLM Agents
Paper • 2508.04038 • Published • 1 -
SensorLLM: Human-Intuitive Alignment of Multivariate Sensor Data with LLMs for Activity Recognition
Paper • 2410.10624 • Published • 1 -
COMODO: Cross-Modal Video-to-IMU Distillation for Efficient Egocentric Human Activity Recognition
Paper • 2503.07259 • Published -
zechenli03/sensor_qa_data
Updated • 14 • 1
AI & ML interests
None defined yet.
Recent Activity
View all activity
Papers
Multi-Stage Verification-Centric Framework for Mitigating Hallucination in Multi-Modal RAG
Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks
Organization Card
CRUISE
Collaborative Human-Centric AI Systems (CRUISE) Lab, led by Prof. Flora Salim, works on machine learning for time-series, spatio-temporal data, and multimodal sensor data, and on trustworthy AI (including fairness, explainability, mechanistic interpretablity) for decision making systems. Our research is supported by the ARC, CRC, and many local and international industry and government partners. We share our codes and some sample datasets in our CRUISE GitHub repository.
Massive Semantic Trajectories for Understanding POI Check-ins (Wongso et al., 2025). https://github.com/cruiseresearchgroup/Massive-STEPS
-
Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks
Paper • 2505.11239 • Published -
CRUISEResearchGroup/Massive-STEPS-Bandung
Viewer • Updated • 217k • 19 -
CRUISEResearchGroup/Massive-STEPS-Beijing
Viewer • Updated • 2.04k • 80 -
CRUISEResearchGroup/Massive-STEPS-Istanbul
Viewer • Updated • 761k • 92
-
ZARA: Zero-shot Motion Time-Series Analysis via Knowledge and Retrieval Driven LLM Agents
Paper • 2508.04038 • Published • 1 -
SensorLLM: Human-Intuitive Alignment of Multivariate Sensor Data with LLMs for Activity Recognition
Paper • 2410.10624 • Published • 1 -
COMODO: Cross-Modal Video-to-IMU Distillation for Efficient Egocentric Human Activity Recognition
Paper • 2503.07259 • Published -
zechenli03/sensor_qa_data
Updated • 14 • 1
Massive Semantic Trajectories for Understanding POI Check-ins (Wongso et al., 2025). https://github.com/cruiseresearchgroup/Massive-STEPS
-
Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks
Paper • 2505.11239 • Published -
CRUISEResearchGroup/Massive-STEPS-Bandung
Viewer • Updated • 217k • 19 -
CRUISEResearchGroup/Massive-STEPS-Beijing
Viewer • Updated • 2.04k • 80 -
CRUISEResearchGroup/Massive-STEPS-Istanbul
Viewer • Updated • 761k • 92
models
0
None public yet
datasets
17
CRUISEResearchGroup/BLUE-Dataset
Updated
•
2
CRUISEResearchGroup/Massive-STEPS-Beijing
Viewer
•
Updated
•
2.04k
•
80
CRUISEResearchGroup/Massive-STEPS-Tokyo
Viewer
•
Updated
•
19.3k
•
45
CRUISEResearchGroup/Massive-STEPS-Sydney
Viewer
•
Updated
•
40k
•
66
CRUISEResearchGroup/Massive-STEPS-Shanghai
Viewer
•
Updated
•
14.1k
•
56
CRUISEResearchGroup/Massive-STEPS-Sao-Paulo
Viewer
•
Updated
•
347k
•
45
CRUISEResearchGroup/Massive-STEPS-Petaling-Jaya
Viewer
•
Updated
•
687k
•
87
CRUISEResearchGroup/Massive-STEPS-New-York
Viewer
•
Updated
•
364k
•
78
CRUISEResearchGroup/Massive-STEPS-Moscow
Viewer
•
Updated
•
145k
•
108
CRUISEResearchGroup/Massive-STEPS-Melbourne
Viewer
•
Updated
•
29.9k
•
100