Spaces:
Build error
Build error
| import gradio as gr | |
| import torchvision.transforms as transforms | |
| from PIL import Image | |
| import torch | |
| from timm.models import create_model | |
| import numpy as np | |
| def predict(input_img): | |
| input_img = Image.fromarray(np.uint8(input_img)) | |
| model1 = create_model( | |
| 'resnet50', | |
| drop_rate=0.5, | |
| num_classes=1,) | |
| model2 = create_model( | |
| 'resnet50', | |
| drop_rate=0.5, | |
| num_classes=1,) | |
| checkpoint1 = torch.load("./machine_full_best.tar",map_location=torch.device('cpu')) | |
| model1.load_state_dict(checkpoint1['state_dict']) | |
| checkpoint2 = torch.load("./human_full_best.tar",map_location=torch.device('cpu')) | |
| model2.load_state_dict(checkpoint2['state_dict']) | |
| my_transform = transforms.Compose([ | |
| transforms.RandomResizedCrop(224, (1, 1)), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.485, 0.456, 0.406], | |
| std=[0.229, 0.224, 0.225]),]) | |
| input_img = my_transform(input_img).view(1,3,224,224) | |
| model1.eval() | |
| model2.eval() | |
| result1 = round(model1(input_img).item(), 3) | |
| result2 = round(model2(input_img).item(), 3) | |
| result = 'MachineMem score = ' + str(result1) + ', HumanMem score = ' + str(result2) +'.' | |
| return result | |
| demo = gr.Interface(predict, gr.Image(), "text", examples=["1.jpg", "2.jpg", "3.jpg", "4.jpg", "5.jpg", "6.jpg", "7.jpg", "8.jpg", "9.jpg", "10.jpg", "12.jpg", "13.jpg", "14.jpg", "15.jpg", "16.jpg", "18.jpg", "19.jpg", "20.jpg","21.jpg", "22.jpg", "24.jpg", "25.jpg", "26.jpg", "27.jpg", "28.jpg", "30.jpg","32.jpg", "35.jpg", "36.jpg", "37.jpg"]) | |
| demo.launch(debug = True) |