Upload 108 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +4 -0
- BetaMixture.py +187 -0
- LICENSE +21 -0
- README.md +137 -3
- baselines.py +51 -0
- clip/__init__.py +2 -0
- clip/__pycache__/__init__.cpython-310.pyc +0 -0
- clip/__pycache__/__init__.cpython-312.pyc +0 -0
- clip/__pycache__/__init__.cpython-38.pyc +0 -0
- clip/__pycache__/__init__.cpython-39.pyc +0 -0
- clip/__pycache__/clip.cpython-310.pyc +0 -0
- clip/__pycache__/clip.cpython-312.pyc +0 -0
- clip/__pycache__/clip.cpython-38.pyc +0 -0
- clip/__pycache__/clip.cpython-39.pyc +0 -0
- clip/__pycache__/cocoop.cpython-310.pyc +0 -0
- clip/__pycache__/cocoop.cpython-312.pyc +0 -0
- clip/__pycache__/cocoop.cpython-39.pyc +0 -0
- clip/__pycache__/custom_clip.cpython-310.pyc +0 -0
- clip/__pycache__/custom_clip.cpython-312.pyc +0 -0
- clip/__pycache__/custom_clip.cpython-39.pyc +0 -0
- clip/__pycache__/custom_medclip.cpython-310.pyc +0 -0
- clip/__pycache__/custom_medclip.cpython-312.pyc +0 -0
- clip/__pycache__/custom_medclip.cpython-39.pyc +0 -0
- clip/__pycache__/model.cpython-310.pyc +0 -0
- clip/__pycache__/model.cpython-312.pyc +0 -0
- clip/__pycache__/model.cpython-38.pyc +0 -0
- clip/__pycache__/model.cpython-39.pyc +0 -0
- clip/__pycache__/simple_tokenizer.cpython-310.pyc +0 -0
- clip/__pycache__/simple_tokenizer.cpython-312.pyc +0 -0
- clip/__pycache__/simple_tokenizer.cpython-38.pyc +0 -0
- clip/__pycache__/simple_tokenizer.cpython-39.pyc +0 -0
- clip/bpe_simple_vocab_16e6.txt.gz +3 -0
- clip/clip.py +232 -0
- clip/cocoop.py +234 -0
- clip/custom_clip.py +388 -0
- clip/custom_medclip.py +389 -0
- clip/model.py +438 -0
- clip/simple_tokenizer.py +132 -0
- data/__init__.py +0 -0
- data/__pycache__/__init__.cpython-310.pyc +0 -0
- data/__pycache__/__init__.cpython-311.pyc +0 -0
- data/__pycache__/__init__.cpython-312.pyc +0 -0
- data/__pycache__/__init__.cpython-39.pyc +0 -0
- data/__pycache__/augmix_ops.cpython-310.pyc +0 -0
- data/__pycache__/augmix_ops.cpython-311.pyc +0 -0
- data/__pycache__/augmix_ops.cpython-312.pyc +0 -0
- data/__pycache__/augmix_ops.cpython-39.pyc +0 -0
- data/__pycache__/cls_to_names.cpython-310.pyc +0 -0
- data/__pycache__/cls_to_names.cpython-312.pyc +0 -0
- data/__pycache__/cls_to_names.cpython-39.pyc +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
figures/eval.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
figures/method.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
figures/mi_v_ent.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
figures/results.png filter=lfs diff=lfs merge=lfs -text
|
BetaMixture.py
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from scipy.special import betaln, logsumexp
|
| 3 |
+
from sklearn.cluster import KMeans
|
| 4 |
+
|
| 5 |
+
class BetaMixtureModel:
|
| 6 |
+
"""
|
| 7 |
+
Beta Mixture Model (Multivariate version).
|
| 8 |
+
Each dimension is modeled independently by a Beta distribution.
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
def __init__(self, n_mixtures=3, random_seed=1):
|
| 12 |
+
self.n_mixtures = n_mixtures
|
| 13 |
+
self.random_seed = random_seed
|
| 14 |
+
self.convergence = False
|
| 15 |
+
|
| 16 |
+
def _init_clusters(self, data_matrix, init_round):
|
| 17 |
+
"""
|
| 18 |
+
Initialize the mixture responsibilities (assignments) via k-means or uniformly random
|
| 19 |
+
"""
|
| 20 |
+
if self.method == "kmeans":
|
| 21 |
+
km = KMeans(
|
| 22 |
+
n_clusters=self.n_mixtures,
|
| 23 |
+
n_init=1,
|
| 24 |
+
random_state=self.random_seed + init_round
|
| 25 |
+
).fit(data_matrix)
|
| 26 |
+
resp_matrix = np.zeros((self.n_observations, self.n_mixtures))
|
| 27 |
+
resp_matrix[np.arange(self.n_observations), km.labels_] = 1
|
| 28 |
+
else:
|
| 29 |
+
np.random.seed(self.random_seed + init_round)
|
| 30 |
+
resp_matrix = np.random.rand(self.n_observations, self.n_mixtures)
|
| 31 |
+
resp_matrix /= resp_matrix.sum(axis=1, keepdims=True)
|
| 32 |
+
|
| 33 |
+
# Numerical stability
|
| 34 |
+
resp_matrix += 10 * np.finfo(resp_matrix.dtype).eps
|
| 35 |
+
|
| 36 |
+
# Initialize beta parameters (alpha/beta for each dimension)
|
| 37 |
+
self.beta_params_ = np.zeros((self.n_mixtures, self.n_components * 2))
|
| 38 |
+
self._M_step(data_matrix, np.log(resp_matrix))
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def _calc_log_weights(self):
|
| 42 |
+
"""
|
| 43 |
+
Return log of current mixture weights.
|
| 44 |
+
"""
|
| 45 |
+
return np.log(self.mix_weights_)
|
| 46 |
+
|
| 47 |
+
def _calc_mixture_log_probs(self, data_matrix, mixture_idx):
|
| 48 |
+
"""
|
| 49 |
+
Compute log-prob for a single mixture (used if parallelized).
|
| 50 |
+
"""
|
| 51 |
+
alpha_vec = self.beta_params_[mixture_idx, :self.n_components]
|
| 52 |
+
beta_vec = self.beta_params_[mixture_idx, self.n_components:]
|
| 53 |
+
beta_func_log = betaln(alpha_vec, beta_vec)
|
| 54 |
+
return (
|
| 55 |
+
(alpha_vec - 1) * np.log(data_matrix)
|
| 56 |
+
+ (beta_vec - 1) * np.log(1 - data_matrix)
|
| 57 |
+
- beta_func_log
|
| 58 |
+
).sum(axis=1)
|
| 59 |
+
|
| 60 |
+
def _calc_log_probs_all_mixtures(self, data_matrix):
|
| 61 |
+
"""
|
| 62 |
+
Return log-prob for each observation under each mixture (unnormalized).
|
| 63 |
+
"""
|
| 64 |
+
log_prob = np.empty((self.n_observations, self.n_mixtures))
|
| 65 |
+
for mix in range(self.n_mixtures):
|
| 66 |
+
alpha_vec = self.beta_params_[mix, :self.n_components]
|
| 67 |
+
beta_vec = self.beta_params_[mix, self.n_components:]
|
| 68 |
+
bfn = betaln(alpha_vec, beta_vec)
|
| 69 |
+
log_prob[:, mix] = (
|
| 70 |
+
(alpha_vec - 1) * np.log(data_matrix)
|
| 71 |
+
+ (beta_vec - 1) * np.log(1 - data_matrix)
|
| 72 |
+
- bfn
|
| 73 |
+
).sum(axis=1)
|
| 74 |
+
return log_prob
|
| 75 |
+
|
| 76 |
+
def _calc_weighted_log_probs(self, data_matrix):
|
| 77 |
+
"""
|
| 78 |
+
Return the sum of log-probabilities and log-weights.
|
| 79 |
+
"""
|
| 80 |
+
return self._calc_log_probs_all_mixtures(data_matrix) + self._calc_log_weights()
|
| 81 |
+
|
| 82 |
+
def _calc_log_resp_and_norm(self, data_matrix):
|
| 83 |
+
"""
|
| 84 |
+
Return (log_prob_norm, log_resp) for the E-step.
|
| 85 |
+
"""
|
| 86 |
+
weighted_lp = self._calc_weighted_log_probs(data_matrix)
|
| 87 |
+
lp_norm = logsumexp(weighted_lp, axis=1)
|
| 88 |
+
with np.errstate(under="ignore"):
|
| 89 |
+
log_resp = weighted_lp - lp_norm[:, None]
|
| 90 |
+
return lp_norm, log_resp
|
| 91 |
+
|
| 92 |
+
def _E_step(self, data_matrix):
|
| 93 |
+
"""
|
| 94 |
+
E-step: compute average log_prob_norm and log_resp.
|
| 95 |
+
"""
|
| 96 |
+
lp_norm, log_resp = self._calc_log_resp_and_norm(data_matrix)
|
| 97 |
+
return np.mean(lp_norm), log_resp
|
| 98 |
+
|
| 99 |
+
def _compute_responsibilities(self, log_resp):
|
| 100 |
+
"""
|
| 101 |
+
Exponentiate log_resp and sum across observations.
|
| 102 |
+
"""
|
| 103 |
+
resp_matrix = np.exp(log_resp)
|
| 104 |
+
cluster_counts = resp_matrix.sum(axis=0) + 10 * np.finfo(resp_matrix.dtype).eps
|
| 105 |
+
return resp_matrix, cluster_counts
|
| 106 |
+
|
| 107 |
+
def _update_mixture_weights(self, cluster_counts):
|
| 108 |
+
"""
|
| 109 |
+
Update mixture weights from mixture counts.
|
| 110 |
+
"""
|
| 111 |
+
self.mix_weights_ = cluster_counts / cluster_counts.sum()
|
| 112 |
+
|
| 113 |
+
def _M_step(self, data_matrix, log_resp):
|
| 114 |
+
"""
|
| 115 |
+
M-step: update weights and Beta distribution parameters via moment matching.
|
| 116 |
+
"""
|
| 117 |
+
resp_matrix, cluster_counts = self._compute_responsibilities(log_resp)
|
| 118 |
+
self._update_mixture_weights(cluster_counts)
|
| 119 |
+
|
| 120 |
+
w_sums = resp_matrix.T @ data_matrix
|
| 121 |
+
w_sums_sq = resp_matrix.T @ (data_matrix ** 2)
|
| 122 |
+
|
| 123 |
+
for m_idx in range(self.n_mixtures):
|
| 124 |
+
sum_vals = w_sums[m_idx]
|
| 125 |
+
sum_sq_vals = w_sums_sq[m_idx]
|
| 126 |
+
mean_val = sum_vals / cluster_counts[m_idx]
|
| 127 |
+
var_val = sum_sq_vals / cluster_counts[m_idx] - mean_val ** 2
|
| 128 |
+
|
| 129 |
+
# Clip variance
|
| 130 |
+
variance_cap = mean_val * (1 - mean_val) / 4
|
| 131 |
+
var_val = np.minimum(var_val, variance_cap)
|
| 132 |
+
var_val += 10 * np.finfo(var_val.dtype).eps
|
| 133 |
+
|
| 134 |
+
# Compute factor
|
| 135 |
+
scaling_factor = (mean_val * (1 - mean_val)) / (var_val + 1e-10) - 1
|
| 136 |
+
self.beta_params_[m_idx, :self.n_components] = scaling_factor * mean_val
|
| 137 |
+
self.beta_params_[m_idx, self.n_components:] = scaling_factor * (1 - mean_val)
|
| 138 |
+
|
| 139 |
+
def fit(self, data_matrix, num_init=3, method="kmeans", max_iter=1000, tol=1e-4):
|
| 140 |
+
"""
|
| 141 |
+
Fit BetaMixtureModel to the data using EM, possibly with multiple initializations.
|
| 142 |
+
"""
|
| 143 |
+
self.n_observations, self.n_components = data_matrix.shape
|
| 144 |
+
self.convergence = False
|
| 145 |
+
self.method = method
|
| 146 |
+
best_lower_bound = -np.inf
|
| 147 |
+
optimal_params = None
|
| 148 |
+
|
| 149 |
+
for init_round in range(num_init):
|
| 150 |
+
# print(f"{init_round + 1}-th BMM initialization")
|
| 151 |
+
self._init_clusters(data_matrix, init_round)
|
| 152 |
+
ll_bound = -np.inf
|
| 153 |
+
|
| 154 |
+
for _ in range(max_iter):
|
| 155 |
+
prev_bound = ll_bound
|
| 156 |
+
lp_norm, log_resp = self._E_step(data_matrix)
|
| 157 |
+
self._M_step(data_matrix, log_resp)
|
| 158 |
+
ll_bound = lp_norm
|
| 159 |
+
delta_bound = ll_bound - prev_bound
|
| 160 |
+
|
| 161 |
+
if abs(delta_bound) < tol:
|
| 162 |
+
self.convergence = True
|
| 163 |
+
break
|
| 164 |
+
|
| 165 |
+
if ll_bound > best_lower_bound:
|
| 166 |
+
best_lower_bound = ll_bound
|
| 167 |
+
# Update final weights
|
| 168 |
+
_, cluster_counts = self._compute_responsibilities(log_resp)
|
| 169 |
+
self._update_mixture_weights(cluster_counts)
|
| 170 |
+
optimal_params = (self.mix_weights_.copy(), self.beta_params_.copy())
|
| 171 |
+
|
| 172 |
+
self.mix_weights_, self.beta_params_ = optimal_params
|
| 173 |
+
self.max_lower_bound = best_lower_bound
|
| 174 |
+
return self
|
| 175 |
+
|
| 176 |
+
def predict_proba(self, data_matrix):
|
| 177 |
+
"""
|
| 178 |
+
Return the per-mixture membership probabilities for each sample.
|
| 179 |
+
"""
|
| 180 |
+
_, log_resp = self._calc_log_resp_and_norm(data_matrix)
|
| 181 |
+
return np.exp(log_resp)
|
| 182 |
+
|
| 183 |
+
def predict(self, data_matrix):
|
| 184 |
+
"""
|
| 185 |
+
Return the most probable mixture index for each sample.
|
| 186 |
+
"""
|
| 187 |
+
return np.argmax(self.predict_proba(data_matrix), axis=1)
|
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2025 razaimam45
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
README.md
CHANGED
|
@@ -1,3 +1,137 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# T³: Test-Time Model Merging for Medical Vision-Language Models
|
| 2 |
+
|
| 3 |
+

|
| 4 |
+
*Figure 1: Dynamic test-time merging workflow of T³*
|
| 5 |
+
|
| 6 |
+
Official implementation of **T³: Test-Time Model Merging in Vision-Language Models for Zero-Shot Medical Imaging**, a method for adaptive fusion of pretrained and fine-tuned vision-language models at test time using Jensen-Shannon divergence.
|
| 7 |
+
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
## Key Features
|
| 11 |
+
- 🧠 **Mutual Information Guidance**: Uses JS divergence to measure model consensus.
|
| 12 |
+
- ⚡ **Backpropagation-Free**: No gradient updates required during inference.
|
| 13 |
+
- 🏥 **Medical Modality Agnostic**: Validated consistency on 4x medical imaging domains.
|
| 14 |
+
- 🚀 **Batch-Wise Efficiency**: Reduces compute cost by 32x vs sample-wise merging.
|
| 15 |
+
- 📈 **SOTA Performance**: Outperforms 8+ baselines in accuracy & robustness.
|
| 16 |
+
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
## Table of Contents
|
| 20 |
+
- [Installation](#installation)
|
| 21 |
+
- [Method Overview](#method-overview)
|
| 22 |
+
- [Folder Structure](#folder-structure)
|
| 23 |
+
- [Reproducing Results](#reproducing-results)
|
| 24 |
+
- [Pretrained Weights](#pretrained-weights)
|
| 25 |
+
- [Citation](#citation)
|
| 26 |
+
|
| 27 |
+
## Installation
|
| 28 |
+
|
| 29 |
+
1. Clone repository:
|
| 30 |
+
```bash
|
| 31 |
+
git clone https://github.com/yourusername/T3.git
|
| 32 |
+
cd T3
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
2. Create conda environment:
|
| 36 |
+
```bash
|
| 37 |
+
conda create -n t3 python=3.9
|
| 38 |
+
conda activate t3
|
| 39 |
+
pip install -r requirements.txt
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
## Method Overview
|
| 43 |
+
|
| 44 |
+
### Adaptive Merging via Jensen-Shannon Divergence
|
| 45 |
+
The interpolation coefficient λ is computed dynamically for each sample using the following equation:
|
| 46 |
+
|
| 47 |
+
```math
|
| 48 |
+
λ(x) = λ_{min} + (λ_{max}-λ_{min})σ(γ⋅JS(p_{pt}(x)‖p_{ft}(x)))
|
| 49 |
+
```
|
| 50 |
+
|
| 51 |
+
Where:
|
| 52 |
+
- `JS` = Jensen-Shannon divergence between pretrained and fine-tuned model predictions.
|
| 53 |
+
- `σ` = Sigmoid function for smooth scaling.
|
| 54 |
+
- `γ` = Scaling factor (default=0.5).
|
| 55 |
+
|
| 56 |
+
### Visual Explanation of the Method
|
| 57 |
+
Below justifies the method and its effectiveness:
|
| 58 |
+
|
| 59 |
+
### Dynamic Weighting Based on Model Agreement
|
| 60 |
+
|
| 61 |
+
We propose using Jensen–Shannon (JS) divergence to measure mutual information between pretrained (`p_pt`) and fine-tuned (`p_ft`) model predictions, offering a more robust gauge of joint confidence than entropy-based methods like DaWin's entropy ratio:
|
| 62 |
+
|
| 63 |
+
```math
|
| 64 |
+
R(x) = \frac{\mathcal{H}(p_{ft}(x))}{\mathcal{H}(p_{pt}(x)) + \mathcal{H}(p_{ft}(x))}
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
JS divergence explicitly captures agreement vs. disagreement by comparing full predictive distributions:
|
| 68 |
+
|
| 69 |
+
```math
|
| 70 |
+
I(x) = \frac{1}{2} \Bigl(\mathrm{KL}(p_{pt}(x) \Vert \bar{p}(x)) + \mathrm{KL}(p_{ft}(x) \Vert \bar{p}(x))\Bigr)
|
| 71 |
+
```
|
| 72 |
+
where
|
| 73 |
+
```math
|
| 74 |
+
\bar{p}(x) = 0.5 \cdot (p_{pt}(x) + p_{ft}(x))`.
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
This ensures:
|
| 78 |
+
- \(I(x) = 0\) when models fully agree.
|
| 79 |
+
- \(I(x) > 0\) when confident predictions disagree.
|
| 80 |
+
|
| 81 |
+
Empirically, \(I(x)\) correlates positively with \(R(x)\), but better distinguishes disagreements, validating its use for adaptive merging.
|
| 82 |
+
|
| 83 |
+
2. **Mutual Information vs. Entropy**
|
| 84 |
+

|
| 85 |
+
*Figure 3: Relationship between mutual information and entropy for adaptive merging.*
|
| 86 |
+
|
| 87 |
+
3. **Performance Across Modalities**
|
| 88 |
+

|
| 89 |
+
*Figure 4: T³ achieves superior performance across multiple medical imaging modalities.*
|
| 90 |
+
|
| 91 |
+
---
|
| 92 |
+
|
| 93 |
+
## Folder Structure
|
| 94 |
+
|
| 95 |
+
```
|
| 96 |
+
T3/
|
| 97 |
+
├── clip/ # CLIP model adaptations
|
| 98 |
+
├── data/ # Data Utilities
|
| 99 |
+
├── utils/ # Helper functions
|
| 100 |
+
├── baselines.py # Comparison methods
|
| 101 |
+
├── t_cube.py # Core T³ implementation
|
| 102 |
+
├── BetaMixture.py # Auxiliary models
|
| 103 |
+
└── README.md # This document
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
---
|
| 107 |
+
|
| 108 |
+
## Reproducing Results
|
| 109 |
+
|
| 110 |
+
To reproduce the results from the paper, you can run the `t_cube.py` script. This script handles the evaluation of T³ and its baselines across multiple datasets and severity levels. Additional baselines are available in `baselines.py`.
|
| 111 |
+
|
| 112 |
+
To understand the script better:
|
| 113 |
+
- Refer to the `compute_samplewise_tcube_weights` and `compute_samplewise_tcube_weights_MI` functions for entropy (DaWiN baseline) and Our mutual information-based merging.
|
| 114 |
+
- Check the `evaluate_on_test_set` function for how datasets and severities are processed.
|
| 115 |
+
- Explore the `evaluate_tcube` function for the merging and evaluation logic.
|
| 116 |
+
|
| 117 |
+
---
|
| 118 |
+
|
| 119 |
+
## Pretrained Weights
|
| 120 |
+
|
| 121 |
+
We provide pretrained weights for the following models:
|
| 122 |
+
1. **Generalist CLIP**: A pretrained model for general vision-language tasks.
|
| 123 |
+
2. **Expert CLIPs**: 4x Fine-tuned models for the following medical imaging domains:
|
| 124 |
+
- Breast Imaging
|
| 125 |
+
- Fundoscopy
|
| 126 |
+
- Cell Microscopy
|
| 127 |
+
- Retinal OCT
|
| 128 |
+
|
| 129 |
+
If you would like access to these weights, please contact us directly at [Raza Imam](mailto:[email protected]).
|
| 130 |
+
|
| 131 |
+
---
|
| 132 |
+
|
| 133 |
+
## License
|
| 134 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
| 135 |
+
|
| 136 |
+
## Contact
|
| 137 |
+
For questions or collaborations, contact [Raza Imam](mailto:[email protected]).
|
baselines.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import copy
|
| 3 |
+
import numpy as np
|
| 4 |
+
from scipy.stats import pearsonr
|
| 5 |
+
from t_cube import evaluate_model
|
| 6 |
+
|
| 7 |
+
def evaluate_slerp(clip_pt, sd_pt, sd_ft, dataloader, args, alpha=0.5):
|
| 8 |
+
"""
|
| 9 |
+
SLERP (spherical linear interpolation) between pretrained (pt) and fine-tuned (ft) weights.
|
| 10 |
+
alpha=0 -> pt only; alpha=1 -> ft only.
|
| 11 |
+
"""
|
| 12 |
+
model = copy.deepcopy(clip_pt)
|
| 13 |
+
merged_sd = {}
|
| 14 |
+
# flatten-per-key SLERP
|
| 15 |
+
for k in sd_pt.keys():
|
| 16 |
+
w1 = sd_pt[k].flatten().float()
|
| 17 |
+
w2 = sd_ft[k].flatten().float()
|
| 18 |
+
# cosine similarity
|
| 19 |
+
cos_val = torch.dot(w1, w2) / (w1.norm() * w2.norm() + 1e-8)
|
| 20 |
+
omega = torch.acos(torch.clamp(cos_val, -1+1e-6, 1-1e-6))
|
| 21 |
+
sin_omega = torch.sin(omega)
|
| 22 |
+
if sin_omega < 1e-6:
|
| 23 |
+
w_interp = (1-alpha)*w1 + alpha*w2
|
| 24 |
+
else:
|
| 25 |
+
w_interp = (torch.sin((1-alpha)*omega)/sin_omega)*w1 + \
|
| 26 |
+
(torch.sin(alpha*omega)/sin_omega)*w2
|
| 27 |
+
merged_sd[k] = w_interp.view_as(sd_pt[k])
|
| 28 |
+
model.load_state_dict(merged_sd)
|
| 29 |
+
return evaluate_model(model, dataloader, args)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def evaluate_m3(clip_pt, sd_pt, sd_ft, dataloader, args):
|
| 33 |
+
"""
|
| 34 |
+
M^3 (Mixup Model Merge): sample lambda ~ Uniform(0,1) and do linear interpolation.
|
| 35 |
+
"""
|
| 36 |
+
model = copy.deepcopy(clip_pt)
|
| 37 |
+
lam = np.random.rand()
|
| 38 |
+
merged_sd = {k: lam * sd_ft[k] + (1 - lam) * sd_pt[k]
|
| 39 |
+
for k in sd_pt.keys()}
|
| 40 |
+
model.load_state_dict(merged_sd)
|
| 41 |
+
return evaluate_model(model, dataloader, args)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def evaluate_task_arithmetic(clip_pt, sd_pt, sd_ft, dataloader, args):
|
| 45 |
+
"""
|
| 46 |
+
Task Arithmetic: extrapolate along the ft−pt vector, i.e. 2*ft – pt.
|
| 47 |
+
"""
|
| 48 |
+
model = copy.deepcopy(clip_pt)
|
| 49 |
+
merged_sd = {k: 2 * sd_ft[k] - sd_pt[k] for k in sd_pt.keys()}
|
| 50 |
+
model.load_state_dict(merged_sd)
|
| 51 |
+
return evaluate_model(model, dataloader, args)
|
clip/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .clip import *
|
| 2 |
+
from .custom_clip import *
|
clip/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (190 Bytes). View file
|
|
|
clip/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (202 Bytes). View file
|
|
|
clip/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (189 Bytes). View file
|
|
|
clip/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (188 Bytes). View file
|
|
|
clip/__pycache__/clip.cpython-310.pyc
ADDED
|
Binary file (8.43 kB). View file
|
|
|
clip/__pycache__/clip.cpython-312.pyc
ADDED
|
Binary file (13.6 kB). View file
|
|
|
clip/__pycache__/clip.cpython-38.pyc
ADDED
|
Binary file (8.34 kB). View file
|
|
|
clip/__pycache__/clip.cpython-39.pyc
ADDED
|
Binary file (8.4 kB). View file
|
|
|
clip/__pycache__/cocoop.cpython-310.pyc
ADDED
|
Binary file (7.4 kB). View file
|
|
|
clip/__pycache__/cocoop.cpython-312.pyc
ADDED
|
Binary file (13 kB). View file
|
|
|
clip/__pycache__/cocoop.cpython-39.pyc
ADDED
|
Binary file (7.44 kB). View file
|
|
|
clip/__pycache__/custom_clip.cpython-310.pyc
ADDED
|
Binary file (11.1 kB). View file
|
|
|
clip/__pycache__/custom_clip.cpython-312.pyc
ADDED
|
Binary file (19.5 kB). View file
|
|
|
clip/__pycache__/custom_clip.cpython-39.pyc
ADDED
|
Binary file (10.6 kB). View file
|
|
|
clip/__pycache__/custom_medclip.cpython-310.pyc
ADDED
|
Binary file (10.2 kB). View file
|
|
|
clip/__pycache__/custom_medclip.cpython-312.pyc
ADDED
|
Binary file (18.4 kB). View file
|
|
|
clip/__pycache__/custom_medclip.cpython-39.pyc
ADDED
|
Binary file (10 kB). View file
|
|
|
clip/__pycache__/model.cpython-310.pyc
ADDED
|
Binary file (15.2 kB). View file
|
|
|
clip/__pycache__/model.cpython-312.pyc
ADDED
|
Binary file (29.8 kB). View file
|
|
|
clip/__pycache__/model.cpython-38.pyc
ADDED
|
Binary file (15 kB). View file
|
|
|
clip/__pycache__/model.cpython-39.pyc
ADDED
|
Binary file (15 kB). View file
|
|
|
clip/__pycache__/simple_tokenizer.cpython-310.pyc
ADDED
|
Binary file (5.7 kB). View file
|
|
|
clip/__pycache__/simple_tokenizer.cpython-312.pyc
ADDED
|
Binary file (8.92 kB). View file
|
|
|
clip/__pycache__/simple_tokenizer.cpython-38.pyc
ADDED
|
Binary file (5.79 kB). View file
|
|
|
clip/__pycache__/simple_tokenizer.cpython-39.pyc
ADDED
|
Binary file (5.75 kB). View file
|
|
|
clip/bpe_simple_vocab_16e6.txt.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
| 3 |
+
size 1356917
|
clip/clip.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import hashlib
|
| 2 |
+
import os
|
| 3 |
+
import urllib
|
| 4 |
+
import warnings
|
| 5 |
+
from typing import Any, Union, List
|
| 6 |
+
from pkg_resources import packaging
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
|
| 13 |
+
from .model import build_model
|
| 14 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
| 15 |
+
|
| 16 |
+
try:
|
| 17 |
+
from torchvision.transforms import InterpolationMode
|
| 18 |
+
BICUBIC = InterpolationMode.BICUBIC
|
| 19 |
+
except ImportError:
|
| 20 |
+
BICUBIC = Image.BICUBIC
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"):
|
| 24 |
+
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
__all__ = ["available_models", "load", "tokenize"]
|
| 28 |
+
_tokenizer = _Tokenizer()
|
| 29 |
+
|
| 30 |
+
_MODELS = {
|
| 31 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
| 32 |
+
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
| 33 |
+
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
| 34 |
+
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
| 35 |
+
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
|
| 36 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
| 37 |
+
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
| 38 |
+
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def _download(url: str, root: str):
|
| 43 |
+
os.makedirs(root, exist_ok=True)
|
| 44 |
+
filename = os.path.basename(url)
|
| 45 |
+
|
| 46 |
+
expected_sha256 = url.split("/")[-2]
|
| 47 |
+
download_target = os.path.join(root, filename)
|
| 48 |
+
|
| 49 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
| 50 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
| 51 |
+
|
| 52 |
+
if os.path.isfile(download_target):
|
| 53 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
| 54 |
+
return download_target
|
| 55 |
+
else:
|
| 56 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
| 57 |
+
|
| 58 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
| 59 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
| 60 |
+
while True:
|
| 61 |
+
buffer = source.read(8192)
|
| 62 |
+
if not buffer:
|
| 63 |
+
break
|
| 64 |
+
|
| 65 |
+
output.write(buffer)
|
| 66 |
+
loop.update(len(buffer))
|
| 67 |
+
|
| 68 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
| 69 |
+
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
| 70 |
+
|
| 71 |
+
return download_target
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def _convert_image_to_rgb(image):
|
| 75 |
+
return image.convert("RGB")
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def _transform(n_px):
|
| 79 |
+
return Compose([
|
| 80 |
+
Resize(n_px, interpolation=BICUBIC),
|
| 81 |
+
CenterCrop(n_px),
|
| 82 |
+
_convert_image_to_rgb,
|
| 83 |
+
ToTensor(),
|
| 84 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
| 85 |
+
])
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def available_models() -> List[str]:
|
| 89 |
+
"""Returns the names of available CLIP models"""
|
| 90 |
+
return list(_MODELS.keys())
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
|
| 94 |
+
"""Load a CLIP model
|
| 95 |
+
|
| 96 |
+
Parameters
|
| 97 |
+
----------
|
| 98 |
+
name : str
|
| 99 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
| 100 |
+
|
| 101 |
+
device : Union[str, torch.device]
|
| 102 |
+
The device to put the loaded model
|
| 103 |
+
|
| 104 |
+
jit : bool
|
| 105 |
+
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
| 106 |
+
|
| 107 |
+
download_root: str
|
| 108 |
+
path to download the model files; by default, it uses "~/.cache/clip"
|
| 109 |
+
|
| 110 |
+
Returns
|
| 111 |
+
-------
|
| 112 |
+
model : torch.nn.Module
|
| 113 |
+
The CLIP model
|
| 114 |
+
|
| 115 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
| 116 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
| 117 |
+
"""
|
| 118 |
+
if name in _MODELS:
|
| 119 |
+
model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
|
| 120 |
+
elif os.path.isfile(name):
|
| 121 |
+
model_path = name
|
| 122 |
+
else:
|
| 123 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
| 124 |
+
|
| 125 |
+
try:
|
| 126 |
+
# loading JIT archive
|
| 127 |
+
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
| 128 |
+
state_dict = None
|
| 129 |
+
except RuntimeError:
|
| 130 |
+
# loading saved state dict
|
| 131 |
+
if jit:
|
| 132 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
| 133 |
+
jit = False
|
| 134 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
| 135 |
+
|
| 136 |
+
embed_dim = model.state_dict()["text_projection"].shape[1]
|
| 137 |
+
if not jit:
|
| 138 |
+
model = build_model(state_dict or model.state_dict()).to(device)
|
| 139 |
+
if str(device) == "cpu":
|
| 140 |
+
model.float()
|
| 141 |
+
return model, embed_dim, _transform(model.visual.input_resolution)
|
| 142 |
+
|
| 143 |
+
# patch the device names
|
| 144 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
| 145 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
| 146 |
+
|
| 147 |
+
def patch_device(module):
|
| 148 |
+
try:
|
| 149 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
| 150 |
+
except RuntimeError:
|
| 151 |
+
graphs = []
|
| 152 |
+
|
| 153 |
+
if hasattr(module, "forward1"):
|
| 154 |
+
graphs.append(module.forward1.graph)
|
| 155 |
+
|
| 156 |
+
for graph in graphs:
|
| 157 |
+
for node in graph.findAllNodes("prim::Constant"):
|
| 158 |
+
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
| 159 |
+
node.copyAttributes(device_node)
|
| 160 |
+
|
| 161 |
+
model.apply(patch_device)
|
| 162 |
+
patch_device(model.encode_image)
|
| 163 |
+
patch_device(model.encode_text)
|
| 164 |
+
|
| 165 |
+
# patch dtype to float32 on CPU
|
| 166 |
+
if str(device) == "cpu":
|
| 167 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
| 168 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
| 169 |
+
float_node = float_input.node()
|
| 170 |
+
|
| 171 |
+
def patch_float(module):
|
| 172 |
+
try:
|
| 173 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
| 174 |
+
except RuntimeError:
|
| 175 |
+
graphs = []
|
| 176 |
+
|
| 177 |
+
if hasattr(module, "forward1"):
|
| 178 |
+
graphs.append(module.forward1.graph)
|
| 179 |
+
|
| 180 |
+
for graph in graphs:
|
| 181 |
+
for node in graph.findAllNodes("aten::to"):
|
| 182 |
+
inputs = list(node.inputs())
|
| 183 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
| 184 |
+
if inputs[i].node()["value"] == 5:
|
| 185 |
+
inputs[i].node().copyAttributes(float_node)
|
| 186 |
+
|
| 187 |
+
model.apply(patch_float)
|
| 188 |
+
patch_float(model.encode_image)
|
| 189 |
+
patch_float(model.encode_text)
|
| 190 |
+
|
| 191 |
+
model.float()
|
| 192 |
+
|
| 193 |
+
return model, embed_dim, _transform(model.input_resolution.item())
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> torch.LongTensor:
|
| 197 |
+
"""
|
| 198 |
+
Returns the tokenized representation of given input string(s)
|
| 199 |
+
|
| 200 |
+
Parameters
|
| 201 |
+
----------
|
| 202 |
+
texts : Union[str, List[str]]
|
| 203 |
+
An input string or a list of input strings to tokenize
|
| 204 |
+
|
| 205 |
+
context_length : int
|
| 206 |
+
The context length to use; all CLIP models use 77 as the context length
|
| 207 |
+
|
| 208 |
+
truncate: bool
|
| 209 |
+
Whether to truncate the text in case its encoding is longer than the context length
|
| 210 |
+
|
| 211 |
+
Returns
|
| 212 |
+
-------
|
| 213 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
| 214 |
+
"""
|
| 215 |
+
if isinstance(texts, str):
|
| 216 |
+
texts = [texts]
|
| 217 |
+
|
| 218 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
| 219 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
| 220 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
| 221 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
| 222 |
+
|
| 223 |
+
for i, tokens in enumerate(all_tokens):
|
| 224 |
+
if len(tokens) > context_length:
|
| 225 |
+
if truncate:
|
| 226 |
+
tokens = tokens[:context_length]
|
| 227 |
+
tokens[-1] = eot_token
|
| 228 |
+
else:
|
| 229 |
+
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
| 230 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
| 231 |
+
|
| 232 |
+
return result
|
clip/cocoop.py
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import OrderedDict
|
| 2 |
+
from typing import Tuple
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
from clip import load, tokenize
|
| 9 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
| 10 |
+
from .custom_clip import TextEncoder
|
| 11 |
+
from data.imagnet_prompts import imagenet_classes
|
| 12 |
+
from data.cls_to_names import *
|
| 13 |
+
from data.fewshot_datasets import fewshot_datasets
|
| 14 |
+
|
| 15 |
+
_tokenizer = _Tokenizer()
|
| 16 |
+
|
| 17 |
+
DOWNLOAD_ROOT='~/.cache/clip'
|
| 18 |
+
|
| 19 |
+
class CoCoOpPromptLearner(nn.Module):
|
| 20 |
+
def __init__(self, clip_model, classnames, n_ctx=4, ctx_init="a_photo_of_a", ctx_position='end'):
|
| 21 |
+
super().__init__()
|
| 22 |
+
n_cls = len(classnames)
|
| 23 |
+
dtype = clip_model.dtype
|
| 24 |
+
self.dtype = dtype
|
| 25 |
+
self.device = clip_model.visual.conv1.weight.device
|
| 26 |
+
ctx_dim = clip_model.ln_final.weight.shape[0]
|
| 27 |
+
embed_dim = clip_model.text_projection.shape[1]
|
| 28 |
+
self.ctx_dim = ctx_dim
|
| 29 |
+
|
| 30 |
+
if ctx_init:
|
| 31 |
+
# use given words to initialize context vectors
|
| 32 |
+
print("Initializing the contect with given words: [{}]".format(ctx_init))
|
| 33 |
+
ctx_init = ctx_init.replace("_", " ")
|
| 34 |
+
n_ctx = len(ctx_init.split(" "))
|
| 35 |
+
prompt = tokenize(ctx_init).to(self.device)
|
| 36 |
+
with torch.no_grad():
|
| 37 |
+
embedding = clip_model.token_embedding(prompt).type(dtype)
|
| 38 |
+
ctx_vectors = embedding[0, 1 : 1 + n_ctx, :]
|
| 39 |
+
prompt_prefix = ctx_init
|
| 40 |
+
|
| 41 |
+
else:
|
| 42 |
+
print("Random initialization: initializing a generic context")
|
| 43 |
+
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
|
| 44 |
+
nn.init.normal_(ctx_vectors, std=0.02)
|
| 45 |
+
prompt_prefix = " ".join(["X"] * n_ctx)
|
| 46 |
+
|
| 47 |
+
print(f'Initial context: "{prompt_prefix}"')
|
| 48 |
+
print(f"Number of context words (tokens): {n_ctx}")
|
| 49 |
+
self.prompt_prefix = prompt_prefix
|
| 50 |
+
|
| 51 |
+
self.ctx = nn.Parameter(ctx_vectors) # to be optimized
|
| 52 |
+
self.meta_net = nn.Sequential(OrderedDict([
|
| 53 |
+
("linear1", nn.Linear(embed_dim, embed_dim // 16)),
|
| 54 |
+
("relu", nn.ReLU(inplace=True)),
|
| 55 |
+
("linear2", nn.Linear(embed_dim // 16, ctx_dim))
|
| 56 |
+
]))
|
| 57 |
+
|
| 58 |
+
classnames = [name.replace("_", " ") for name in classnames]
|
| 59 |
+
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
|
| 60 |
+
prompts = [prompt_prefix + " " + name + "." for name in classnames]
|
| 61 |
+
|
| 62 |
+
tokenized_prompts = torch.cat([tokenize(p) for p in prompts]).to(self.device)
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
embedding = clip_model.token_embedding(tokenized_prompts).type(dtype)
|
| 65 |
+
|
| 66 |
+
# These token vectors will be saved when in save_model(),
|
| 67 |
+
# but they should be ignored in load_model() as we want to use
|
| 68 |
+
# those computed using the current class names
|
| 69 |
+
self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS
|
| 70 |
+
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx :, :]) # CLS, EOS
|
| 71 |
+
|
| 72 |
+
self.ctx_init = ctx_init
|
| 73 |
+
self.tokenized_prompts = tokenized_prompts # torch.Tensor
|
| 74 |
+
self.name_lens = name_lens
|
| 75 |
+
self.class_token_position = ctx_position
|
| 76 |
+
self.n_cls = n_cls
|
| 77 |
+
self.n_ctx = n_ctx
|
| 78 |
+
|
| 79 |
+
def construct_prompts(self, ctx, prefix, suffix, label=None):
|
| 80 |
+
# dim0 is either batch_size (during training) or n_cls (during testing)
|
| 81 |
+
# ctx: context tokens, with shape of (dim0, n_ctx, ctx_dim)
|
| 82 |
+
# prefix: the sos token, with shape of (n_cls, 1, ctx_dim)
|
| 83 |
+
# suffix: remaining tokens, with shape of (n_cls, *, ctx_dim)
|
| 84 |
+
|
| 85 |
+
if label is not None:
|
| 86 |
+
prefix = prefix[label]
|
| 87 |
+
suffix = suffix[label]
|
| 88 |
+
|
| 89 |
+
prompts = torch.cat(
|
| 90 |
+
[
|
| 91 |
+
prefix, # (dim0, 1, dim)
|
| 92 |
+
ctx, # (dim0, n_ctx, dim)
|
| 93 |
+
suffix, # (dim0, *, dim)
|
| 94 |
+
],
|
| 95 |
+
dim=1,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
return prompts
|
| 99 |
+
|
| 100 |
+
def reset_classnames(self, classnames, arch):
|
| 101 |
+
self.n_cls = len(classnames)
|
| 102 |
+
classnames = [name.replace("_", " ") for name in classnames]
|
| 103 |
+
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
|
| 104 |
+
prompts = [self.prompt_prefix + " " + name + "." for name in classnames]
|
| 105 |
+
tokenized_prompts = torch.cat([tokenize(p) for p in prompts]).to(self.device)
|
| 106 |
+
|
| 107 |
+
clip, _, _ = load(arch, device=self.device, download_root=DOWNLOAD_ROOT)
|
| 108 |
+
|
| 109 |
+
with torch.no_grad():
|
| 110 |
+
embedding = clip.token_embedding(tokenized_prompts).type(self.dtype)
|
| 111 |
+
|
| 112 |
+
self.token_prefix = embedding[:, :1, :]
|
| 113 |
+
self.token_suffix = embedding[:, 1 + self.n_ctx :, :] # CLS, EOS
|
| 114 |
+
|
| 115 |
+
self.name_lens = name_lens
|
| 116 |
+
self.tokenized_prompts = tokenized_prompts
|
| 117 |
+
|
| 118 |
+
def forward(self, im_features, ctx_only=False):
|
| 119 |
+
prefix = self.token_prefix
|
| 120 |
+
suffix = self.token_suffix
|
| 121 |
+
ctx = self.ctx # (n_ctx, ctx_dim)
|
| 122 |
+
bias = self.meta_net(im_features) # (batch, ctx_dim)
|
| 123 |
+
bias = bias.unsqueeze(1) # (batch, 1, ctx_dim)
|
| 124 |
+
ctx = ctx.unsqueeze(0) # (1, n_ctx, ctx_dim)
|
| 125 |
+
ctx_shifted = ctx + bias # (batch, n_ctx, ctx_dim)
|
| 126 |
+
if ctx_only:
|
| 127 |
+
return ctx_shifted # don't expand to n_cls, optimize one ctx for all classes
|
| 128 |
+
|
| 129 |
+
# Use instance-conditioned context tokens for all classes
|
| 130 |
+
prompts = []
|
| 131 |
+
for ctx_shifted_i in ctx_shifted:
|
| 132 |
+
ctx_i = ctx_shifted_i.unsqueeze(0).expand(self.n_cls, -1, -1)
|
| 133 |
+
pts_i = self.construct_prompts(ctx_i, prefix, suffix) # (n_cls, n_tkn, ctx_dim)
|
| 134 |
+
prompts.append(pts_i)
|
| 135 |
+
prompts = torch.stack(prompts)
|
| 136 |
+
|
| 137 |
+
return prompts
|
| 138 |
+
|
| 139 |
+
class CoCoOpCLIP(nn.Module):
|
| 140 |
+
def __init__(self, device, classnames, criterion='cosine', arch="ViT-L/14",
|
| 141 |
+
n_ctx=16, ctx_init="a_photo_of_a", ctx_position='end'):
|
| 142 |
+
super().__init__()
|
| 143 |
+
clip, _, _ = load(arch, device=device, download_root=DOWNLOAD_ROOT)
|
| 144 |
+
self.image_encoder = clip.visual
|
| 145 |
+
self.text_encoder = TextEncoder(clip)
|
| 146 |
+
self.logit_scale = clip.logit_scale.data
|
| 147 |
+
# prompt tuning
|
| 148 |
+
self.prompt_generator = CoCoOpPromptLearner(clip, classnames, n_ctx, ctx_init, ctx_position)
|
| 149 |
+
self.tokenized_prompts = self.prompt_generator.tokenized_prompts
|
| 150 |
+
self.criterion = criterion
|
| 151 |
+
self.dtype = clip.dtype
|
| 152 |
+
|
| 153 |
+
def inference(self, image, label=None):
|
| 154 |
+
tokenized_prompts = self.prompt_generator.tokenized_prompts
|
| 155 |
+
logit_scale = self.logit_scale.exp()
|
| 156 |
+
|
| 157 |
+
image_features = self.image_encoder(image.type(self.dtype))
|
| 158 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
| 159 |
+
|
| 160 |
+
prompts = self.prompt_generator(image_features)
|
| 161 |
+
|
| 162 |
+
logits = []
|
| 163 |
+
for pts_i, imf_i in zip(prompts, image_features):
|
| 164 |
+
text_features = self.text_encoder(pts_i, tokenized_prompts)
|
| 165 |
+
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
| 166 |
+
l_i = logit_scale * imf_i @ text_features.t()
|
| 167 |
+
logits.append(l_i)
|
| 168 |
+
logits = torch.stack(logits)
|
| 169 |
+
|
| 170 |
+
return logits
|
| 171 |
+
|
| 172 |
+
def gen_ctx(self, image, aug=False):
|
| 173 |
+
with torch.no_grad():
|
| 174 |
+
with torch.cuda.amp.autocast():
|
| 175 |
+
image_features = self.image_encoder(image.type(self.dtype))
|
| 176 |
+
if aug:
|
| 177 |
+
image_feature_avg = image_features[0].unsqueeze(0)
|
| 178 |
+
else:
|
| 179 |
+
image_feature_avg = image_features.mean(dim=0, keepdim=True)
|
| 180 |
+
ctx = self.prompt_generator(image_feature_avg, ctx_only=True)
|
| 181 |
+
|
| 182 |
+
return image_features, ctx.detach().clone()
|
| 183 |
+
|
| 184 |
+
def forward_ctx(self, image_features, ctx):
|
| 185 |
+
N = 1
|
| 186 |
+
|
| 187 |
+
prefix = self.prompt_generator.token_prefix.expand(N, -1, -1, -1) # [N, n_cls, 1, dim]
|
| 188 |
+
suffix = self.prompt_generator.token_suffix.expand(N, -1, -1, -1)
|
| 189 |
+
# expand `ctx` n_cls times
|
| 190 |
+
ctx = ctx.expand(self.prompt_generator.n_cls, -1, -1, -1)
|
| 191 |
+
ctx = ctx.permute(1, 0, 2, 3)
|
| 192 |
+
# ctx = ctx.reshape(N, self.prompt_generator.n_cls, -1, self.prompt_generator.ctx_dim)
|
| 193 |
+
|
| 194 |
+
prompts = torch.cat([
|
| 195 |
+
prefix,
|
| 196 |
+
ctx,
|
| 197 |
+
suffix
|
| 198 |
+
], dim=-2)
|
| 199 |
+
|
| 200 |
+
# full_n_ctx = prompts.size()[-2]
|
| 201 |
+
|
| 202 |
+
prompts = prompts.reshape(N * self.prompt_generator.n_cls, -1, self.prompt_generator.ctx_dim)
|
| 203 |
+
tokenized_prompts = self.prompt_generator.tokenized_prompts
|
| 204 |
+
tokenized_prompts = tokenized_prompts.repeat(N, 1)
|
| 205 |
+
text_features = self.text_encoder(prompts, tokenized_prompts)
|
| 206 |
+
|
| 207 |
+
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
| 208 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
| 209 |
+
|
| 210 |
+
text_features = text_features.reshape(N, -1, image_features.size()[-1])
|
| 211 |
+
|
| 212 |
+
logit_scale = self.logit_scale.exp()
|
| 213 |
+
|
| 214 |
+
text_features = text_features.squeeze(0)
|
| 215 |
+
logits = logit_scale * image_features @ text_features.t()
|
| 216 |
+
|
| 217 |
+
return logits
|
| 218 |
+
|
| 219 |
+
def forward(self, input):
|
| 220 |
+
if isinstance(input, Tuple):
|
| 221 |
+
image_features, ctx = input
|
| 222 |
+
return self.forward_ctx(image_features, ctx)
|
| 223 |
+
else:
|
| 224 |
+
return self.inference(input)
|
| 225 |
+
|
| 226 |
+
def get_cocoop(clip_arch, test_set, device, n_ctx):
|
| 227 |
+
if test_set in fewshot_datasets:
|
| 228 |
+
classnames = eval("{}_classes".format(test_set.lower()))
|
| 229 |
+
else:
|
| 230 |
+
classnames = imagenet_classes
|
| 231 |
+
|
| 232 |
+
model = CoCoOpCLIP(device, classnames, arch=clip_arch, n_ctx=n_ctx)
|
| 233 |
+
|
| 234 |
+
return model
|
clip/custom_clip.py
ADDED
|
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import math
|
| 3 |
+
from typing import List, Tuple
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
|
| 9 |
+
from clip import load, tokenize
|
| 10 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
| 11 |
+
from data.imagnet_prompts import imagenet_classes
|
| 12 |
+
from data.fewshot_datasets import fewshot_datasets
|
| 13 |
+
from data.cls_to_names import *
|
| 14 |
+
from utils.ModelStock import stock_model
|
| 15 |
+
|
| 16 |
+
_tokenizer = _Tokenizer()
|
| 17 |
+
|
| 18 |
+
DOWNLOAD_ROOT='~/.cache/clip'
|
| 19 |
+
|
| 20 |
+
class ClipImageEncoder(nn.Module):
|
| 21 |
+
def __init__(self, device, arch="ViT-L/14", image_resolution=224, n_class=1000):
|
| 22 |
+
super(ClipImageEncoder, self).__init__()
|
| 23 |
+
clip, embed_dim, _ = load(arch, device=device, download_root=DOWNLOAD_ROOT)
|
| 24 |
+
self.encoder = clip.visual
|
| 25 |
+
del clip.transformer
|
| 26 |
+
torch.cuda.empty_cache()
|
| 27 |
+
|
| 28 |
+
self.cls_head = nn.Linear(embed_dim, n_class)
|
| 29 |
+
|
| 30 |
+
@property
|
| 31 |
+
def dtype(self):
|
| 32 |
+
return self.encoder.conv1.weight.dtype
|
| 33 |
+
|
| 34 |
+
def forward(self, image):
|
| 35 |
+
x = self.encoder(image.type(self.dtype))
|
| 36 |
+
output = self.cls_head(x)
|
| 37 |
+
return output
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class TextEncoder(nn.Module):
|
| 41 |
+
def __init__(self, clip_model):
|
| 42 |
+
super().__init__()
|
| 43 |
+
self.transformer = clip_model.transformer
|
| 44 |
+
self.positional_embedding = clip_model.positional_embedding
|
| 45 |
+
self.ln_final = clip_model.ln_final
|
| 46 |
+
self.text_projection = clip_model.text_projection
|
| 47 |
+
self.dtype = clip_model.dtype
|
| 48 |
+
|
| 49 |
+
def forward(self, prompts, tokenized_prompts):
|
| 50 |
+
x = prompts + self.positional_embedding.type(self.dtype)
|
| 51 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 52 |
+
x = self.transformer(x)
|
| 53 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 54 |
+
x = self.ln_final(x).type(self.dtype)
|
| 55 |
+
|
| 56 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
| 57 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
| 58 |
+
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
|
| 59 |
+
|
| 60 |
+
return x
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class PromptLearner(nn.Module):
|
| 64 |
+
def __init__(self, clip_model, classnames, batch_size=None, n_ctx=16, ctx_init=None, ctx_position='end', learned_cls=False):
|
| 65 |
+
super().__init__()
|
| 66 |
+
n_cls = len(classnames)
|
| 67 |
+
self.learned_cls = learned_cls
|
| 68 |
+
dtype = clip_model.dtype
|
| 69 |
+
self.dtype = dtype
|
| 70 |
+
self.device = clip_model.visual.conv1.weight.device
|
| 71 |
+
ctx_dim = clip_model.ln_final.weight.shape[0]
|
| 72 |
+
self.ctx_dim = ctx_dim
|
| 73 |
+
self.batch_size = batch_size
|
| 74 |
+
|
| 75 |
+
# self.ctx, prompt_prefix = self.reset_prompt(ctx_dim, ctx_init, clip_model)
|
| 76 |
+
|
| 77 |
+
if ctx_init:
|
| 78 |
+
# use given words to initialize context vectors
|
| 79 |
+
print("Initializing the contect with given words: [{}]".format(ctx_init))
|
| 80 |
+
ctx_init = ctx_init.replace("_", " ")
|
| 81 |
+
if '[CLS]' in ctx_init:
|
| 82 |
+
ctx_list = ctx_init.split(" ")
|
| 83 |
+
split_idx = ctx_list.index("[CLS]")
|
| 84 |
+
ctx_init = ctx_init.replace("[CLS] ", "")
|
| 85 |
+
ctx_position = "middle"
|
| 86 |
+
else:
|
| 87 |
+
split_idx = None
|
| 88 |
+
self.split_idx = split_idx
|
| 89 |
+
n_ctx = len(ctx_init.split(" "))
|
| 90 |
+
prompt = tokenize(ctx_init).to(self.device)
|
| 91 |
+
with torch.no_grad():
|
| 92 |
+
embedding = clip_model.token_embedding(prompt).type(dtype)
|
| 93 |
+
ctx_vectors = embedding[0, 1 : 1 + n_ctx, :]
|
| 94 |
+
prompt_prefix = ctx_init
|
| 95 |
+
else:
|
| 96 |
+
print("Random initialization: initializing a generic context")
|
| 97 |
+
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
|
| 98 |
+
nn.init.normal_(ctx_vectors, std=0.02)
|
| 99 |
+
prompt_prefix = " ".join(["X"] * n_ctx)
|
| 100 |
+
|
| 101 |
+
self.prompt_prefix = prompt_prefix
|
| 102 |
+
|
| 103 |
+
print(f'Initial context: "{prompt_prefix}"')
|
| 104 |
+
print(f"Number of context words (tokens): {n_ctx}")
|
| 105 |
+
|
| 106 |
+
# batch-wise prompt tuning for test-time adaptation
|
| 107 |
+
if self.batch_size is not None:
|
| 108 |
+
ctx_vectors = ctx_vectors.repeat(batch_size, 1, 1) #(N, L, D)
|
| 109 |
+
self.ctx_init_state = ctx_vectors.detach().clone()
|
| 110 |
+
self.ctx = nn.Parameter(ctx_vectors) # to be optimized
|
| 111 |
+
|
| 112 |
+
if not self.learned_cls:
|
| 113 |
+
classnames = [name.replace("_", " ") for name in classnames]
|
| 114 |
+
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
|
| 115 |
+
prompts = [prompt_prefix + " " + name + "." for name in classnames]
|
| 116 |
+
else:
|
| 117 |
+
print("Random initialization: initializing a learnable class token")
|
| 118 |
+
cls_vectors = torch.empty(n_cls, 1, ctx_dim, dtype=dtype) # assume each learnable cls_token is only 1 word
|
| 119 |
+
nn.init.normal_(cls_vectors, std=0.02)
|
| 120 |
+
cls_token = "X"
|
| 121 |
+
name_lens = [1 for _ in classnames]
|
| 122 |
+
prompts = [prompt_prefix + " " + cls_token + "." for _ in classnames]
|
| 123 |
+
|
| 124 |
+
self.cls_init_state = cls_vectors.detach().clone()
|
| 125 |
+
self.cls = nn.Parameter(cls_vectors) # to be optimized
|
| 126 |
+
|
| 127 |
+
tokenized_prompts = torch.cat([tokenize(p) for p in prompts]).to(self.device)
|
| 128 |
+
with torch.no_grad():
|
| 129 |
+
embedding = clip_model.token_embedding(tokenized_prompts).type(dtype)
|
| 130 |
+
|
| 131 |
+
# These token vectors will be saved when in save_model(),
|
| 132 |
+
# but they should be ignored in load_model() as we want to use
|
| 133 |
+
# those computed using the current class names
|
| 134 |
+
self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS
|
| 135 |
+
if self.learned_cls:
|
| 136 |
+
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx + 1:, :]) # ..., EOS
|
| 137 |
+
else:
|
| 138 |
+
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx :, :]) # CLS, EOS
|
| 139 |
+
|
| 140 |
+
self.ctx_init = ctx_init
|
| 141 |
+
self.tokenized_prompts = tokenized_prompts # torch.Tensor
|
| 142 |
+
self.name_lens = name_lens
|
| 143 |
+
self.class_token_position = ctx_position
|
| 144 |
+
self.n_cls = n_cls
|
| 145 |
+
self.n_ctx = n_ctx
|
| 146 |
+
self.classnames = classnames
|
| 147 |
+
|
| 148 |
+
def reset(self):
|
| 149 |
+
ctx_vectors = self.ctx_init_state
|
| 150 |
+
self.ctx.copy_(ctx_vectors) # to be optimized
|
| 151 |
+
if self.learned_cls:
|
| 152 |
+
cls_vectors = self.cls_init_state
|
| 153 |
+
self.cls.copy_(cls_vectors)
|
| 154 |
+
|
| 155 |
+
def reset_classnames(self, classnames, arch):
|
| 156 |
+
self.n_cls = len(classnames)
|
| 157 |
+
if not self.learned_cls:
|
| 158 |
+
classnames = [name.replace("_", " ") for name in classnames]
|
| 159 |
+
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
|
| 160 |
+
prompts = [self.prompt_prefix + " " + name + "." for name in classnames]
|
| 161 |
+
else:
|
| 162 |
+
cls_vectors = torch.empty(self.n_cls, 1, self.ctx_dim, dtype=self.dtype) # assume each learnable cls_token is only 1 word
|
| 163 |
+
nn.init.normal_(cls_vectors, std=0.02)
|
| 164 |
+
cls_token = "X"
|
| 165 |
+
name_lens = [1 for _ in classnames]
|
| 166 |
+
prompts = [self.prompt_prefix + " " + cls_token + "." for _ in classnames]
|
| 167 |
+
# TODO: re-init the cls parameters
|
| 168 |
+
# self.cls = nn.Parameter(cls_vectors) # to be optimized
|
| 169 |
+
self.cls_init_state = cls_vectors.detach().clone()
|
| 170 |
+
tokenized_prompts = torch.cat([tokenize(p) for p in prompts]).to(self.device)
|
| 171 |
+
|
| 172 |
+
clip, _, _ = load(arch, device=self.device, download_root=DOWNLOAD_ROOT)
|
| 173 |
+
|
| 174 |
+
with torch.no_grad():
|
| 175 |
+
embedding = clip.token_embedding(tokenized_prompts).type(self.dtype)
|
| 176 |
+
|
| 177 |
+
self.token_prefix = embedding[:, :1, :]
|
| 178 |
+
self.token_suffix = embedding[:, 1 + self.n_ctx :, :] # CLS, EOS
|
| 179 |
+
|
| 180 |
+
self.name_lens = name_lens
|
| 181 |
+
self.tokenized_prompts = tokenized_prompts
|
| 182 |
+
self.classnames = classnames
|
| 183 |
+
|
| 184 |
+
def forward(self, init=None):
|
| 185 |
+
# the init will be used when computing CLIP directional loss
|
| 186 |
+
if init is not None:
|
| 187 |
+
ctx = init
|
| 188 |
+
else:
|
| 189 |
+
ctx = self.ctx
|
| 190 |
+
if ctx.dim() == 2:
|
| 191 |
+
ctx = ctx.unsqueeze(0).expand(self.n_cls, -1, -1)
|
| 192 |
+
elif not ctx.size()[0] == self.n_cls:
|
| 193 |
+
ctx = ctx.unsqueeze(1).expand(-1, self.n_cls, -1, -1)
|
| 194 |
+
|
| 195 |
+
prefix = self.token_prefix
|
| 196 |
+
suffix = self.token_suffix
|
| 197 |
+
if self.batch_size is not None:
|
| 198 |
+
# This way only works for single-gpu setting (could pass batch size as an argument for forward())
|
| 199 |
+
prefix = prefix.repeat(self.batch_size, 1, 1, 1)
|
| 200 |
+
suffix = suffix.repeat(self.batch_size, 1, 1, 1)
|
| 201 |
+
|
| 202 |
+
if self.learned_cls:
|
| 203 |
+
assert self.class_token_position == "end"
|
| 204 |
+
if self.class_token_position == "end":
|
| 205 |
+
if self.learned_cls:
|
| 206 |
+
cls = self.cls
|
| 207 |
+
prompts = torch.cat(
|
| 208 |
+
[
|
| 209 |
+
prefix, # (n_cls, 1, dim)
|
| 210 |
+
ctx, # (n_cls, n_ctx, dim)
|
| 211 |
+
cls, # (n_cls, 1, dim)
|
| 212 |
+
suffix, # (n_cls, *, dim)
|
| 213 |
+
],
|
| 214 |
+
dim=-2,
|
| 215 |
+
)
|
| 216 |
+
else:
|
| 217 |
+
prompts = torch.cat(
|
| 218 |
+
[
|
| 219 |
+
prefix, # (n_cls, 1, dim)
|
| 220 |
+
ctx, # (n_cls, n_ctx, dim)
|
| 221 |
+
suffix, # (n_cls, *, dim)
|
| 222 |
+
],
|
| 223 |
+
dim=-2,
|
| 224 |
+
)
|
| 225 |
+
elif self.class_token_position == "middle":
|
| 226 |
+
# TODO: to work with a batch of prompts
|
| 227 |
+
if self.split_idx is not None:
|
| 228 |
+
half_n_ctx = self.split_idx # split the ctx at the position of [CLS] in `ctx_init`
|
| 229 |
+
else:
|
| 230 |
+
half_n_ctx = self.n_ctx // 2
|
| 231 |
+
prompts = []
|
| 232 |
+
for i in range(self.n_cls):
|
| 233 |
+
name_len = self.name_lens[i]
|
| 234 |
+
prefix_i = prefix[i : i + 1, :, :]
|
| 235 |
+
class_i = suffix[i : i + 1, :name_len, :]
|
| 236 |
+
suffix_i = suffix[i : i + 1, name_len:, :]
|
| 237 |
+
ctx_i_half1 = ctx[i : i + 1, :half_n_ctx, :]
|
| 238 |
+
ctx_i_half2 = ctx[i : i + 1, half_n_ctx:, :]
|
| 239 |
+
prompt = torch.cat(
|
| 240 |
+
[
|
| 241 |
+
prefix_i, # (1, 1, dim)
|
| 242 |
+
ctx_i_half1, # (1, n_ctx//2, dim)
|
| 243 |
+
class_i, # (1, name_len, dim)
|
| 244 |
+
ctx_i_half2, # (1, n_ctx//2, dim)
|
| 245 |
+
suffix_i, # (1, *, dim)
|
| 246 |
+
],
|
| 247 |
+
dim=1,
|
| 248 |
+
)
|
| 249 |
+
prompts.append(prompt)
|
| 250 |
+
prompts = torch.cat(prompts, dim=0)
|
| 251 |
+
|
| 252 |
+
elif self.class_token_position == "front":
|
| 253 |
+
prompts = []
|
| 254 |
+
for i in range(self.n_cls):
|
| 255 |
+
name_len = self.name_lens[i]
|
| 256 |
+
prefix_i = prefix[i : i + 1, :, :]
|
| 257 |
+
class_i = suffix[i : i + 1, :name_len, :]
|
| 258 |
+
suffix_i = suffix[i : i + 1, name_len:, :]
|
| 259 |
+
ctx_i = ctx[i : i + 1, :, :]
|
| 260 |
+
prompt = torch.cat(
|
| 261 |
+
[
|
| 262 |
+
prefix_i, # (1, 1, dim)
|
| 263 |
+
class_i, # (1, name_len, dim)
|
| 264 |
+
ctx_i, # (1, n_ctx, dim)
|
| 265 |
+
suffix_i, # (1, *, dim)
|
| 266 |
+
],
|
| 267 |
+
dim=1,
|
| 268 |
+
)
|
| 269 |
+
prompts.append(prompt)
|
| 270 |
+
prompts = torch.cat(prompts, dim=0)
|
| 271 |
+
|
| 272 |
+
else:
|
| 273 |
+
raise ValueError
|
| 274 |
+
|
| 275 |
+
return prompts
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
class ClipTestTimeTuning(nn.Module):
|
| 279 |
+
def __init__(self, device, classnames, batch_size, criterion='cosine', arch="ViT-L/14",
|
| 280 |
+
n_ctx=16, ctx_init=None, ctx_position='end', learned_cls=False, pubmedclip_path=None,
|
| 281 |
+
merge=False, state_dict=None):
|
| 282 |
+
super(ClipTestTimeTuning, self).__init__()
|
| 283 |
+
clip, _, _ = load(arch, device=device, download_root=DOWNLOAD_ROOT)
|
| 284 |
+
if pubmedclip_path is not None:
|
| 285 |
+
ft_dict = torch.load(pubmedclip_path, map_location=f'cuda:{device}')
|
| 286 |
+
if merge:
|
| 287 |
+
print("Merging the weights of clip and state dict using WiSE-FT approach")
|
| 288 |
+
# WiSE-FT approach
|
| 289 |
+
merged_dict = {}
|
| 290 |
+
alpha = 0.50 # You can adjust this value as needed
|
| 291 |
+
for key in clip.state_dict().keys():
|
| 292 |
+
merged_dict[key] = alpha * ft_dict[key] + (1 - alpha) * clip.state_dict()[key] # clip.load_state_dict(state_dict)
|
| 293 |
+
# Model Stock
|
| 294 |
+
# state_dict = stock_model(state_dict, clip.state_dict())
|
| 295 |
+
else:
|
| 296 |
+
merged_dict = ft_dict
|
| 297 |
+
clip.load_state_dict(merged_dict)
|
| 298 |
+
if state_dict is not None:
|
| 299 |
+
clip.load_state_dict(state_dict)
|
| 300 |
+
self.visual = clip.visual
|
| 301 |
+
self.text_encoder = TextEncoder(clip)
|
| 302 |
+
self.logit_scale = clip.logit_scale.data
|
| 303 |
+
# prompt tuning
|
| 304 |
+
self.prompt_learner = PromptLearner(clip, classnames, batch_size, n_ctx, ctx_init, ctx_position, learned_cls)
|
| 305 |
+
self.criterion = criterion
|
| 306 |
+
self.l2_norm_cal = False
|
| 307 |
+
|
| 308 |
+
@property
|
| 309 |
+
def dtype(self):
|
| 310 |
+
return self.visual.conv1.weight.dtype
|
| 311 |
+
|
| 312 |
+
# restore the initial state of the prompt_learner (tunable prompt)
|
| 313 |
+
def reset(self):
|
| 314 |
+
self.prompt_learner.reset()
|
| 315 |
+
|
| 316 |
+
def reset_classnames(self, classnames, arch):
|
| 317 |
+
self.prompt_learner.reset_classnames(classnames, arch)
|
| 318 |
+
|
| 319 |
+
def get_text_features(self, normalize=True):
|
| 320 |
+
text_features = []
|
| 321 |
+
prompts = self.prompt_learner()
|
| 322 |
+
tokenized_prompts = self.prompt_learner.tokenized_prompts
|
| 323 |
+
t_features = self.text_encoder(prompts, tokenized_prompts)
|
| 324 |
+
if normalize:
|
| 325 |
+
t_features = t_features / t_features.norm(dim=-1, keepdim=True)
|
| 326 |
+
text_features.append(t_features)
|
| 327 |
+
text_features = torch.stack(text_features, dim=0)
|
| 328 |
+
|
| 329 |
+
return torch.mean(text_features, dim=0)
|
| 330 |
+
|
| 331 |
+
def inference(self, image, return_logits=False, normalize=True):
|
| 332 |
+
with torch.no_grad():
|
| 333 |
+
image_features = self.visual(image.type(self.dtype))
|
| 334 |
+
# with torch.no_grad():
|
| 335 |
+
text_features = self.get_text_features(normalize=normalize)
|
| 336 |
+
if normalize:
|
| 337 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
| 338 |
+
|
| 339 |
+
#[c-tpt] --------------------------------------------
|
| 340 |
+
if self.l2_norm_cal:
|
| 341 |
+
prompt_mean = text_features.mean(0)
|
| 342 |
+
feature_distance = text_features - prompt_mean
|
| 343 |
+
l2_norm = torch.linalg.norm(feature_distance, dim=-1)
|
| 344 |
+
l2_norm_mean = l2_norm.mean()
|
| 345 |
+
|
| 346 |
+
#for saving to csv file
|
| 347 |
+
self.l2_norm_mean = l2_norm_mean.item()
|
| 348 |
+
|
| 349 |
+
#for training
|
| 350 |
+
self.l2_norm_mean_training = l2_norm_mean
|
| 351 |
+
|
| 352 |
+
#-----------------------------------------------------
|
| 353 |
+
|
| 354 |
+
logit_scale = self.logit_scale.exp()
|
| 355 |
+
logits = logit_scale * image_features @ text_features.t()
|
| 356 |
+
|
| 357 |
+
if return_logits:
|
| 358 |
+
return logits, image_features, text_features
|
| 359 |
+
|
| 360 |
+
return logits
|
| 361 |
+
|
| 362 |
+
def forward(self, input, return_logits=False, normalize=True):
|
| 363 |
+
if isinstance(input, Tuple):
|
| 364 |
+
view_0, view_1, view_2 = input
|
| 365 |
+
return self.contrast_prompt_tuning(view_0, view_1, view_2)
|
| 366 |
+
elif len(input.size()) == 2:
|
| 367 |
+
return self.directional_prompt_tuning(input)
|
| 368 |
+
else:
|
| 369 |
+
return self.inference(input, return_logits, normalize)
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
def get_coop(clip_arch, test_set, device, n_ctx, ctx_init, classnames, learned_cls=False, pubmedclip_path=None, merge=False, state_dict=None):
|
| 373 |
+
# if test_set in fewshot_datasets:
|
| 374 |
+
# classnames = eval("{}_classes".format(test_set.lower()))
|
| 375 |
+
# elif test_set == 'bongard':
|
| 376 |
+
# if learned_cls:
|
| 377 |
+
# classnames = ['X', 'X']
|
| 378 |
+
# else:
|
| 379 |
+
# classnames = ['True', 'False']
|
| 380 |
+
# else:
|
| 381 |
+
# classnames = imagenet_classes
|
| 382 |
+
|
| 383 |
+
model = ClipTestTimeTuning(device, classnames, None, arch=clip_arch,
|
| 384 |
+
n_ctx=n_ctx, ctx_init=ctx_init, learned_cls=learned_cls, pubmedclip_path=pubmedclip_path, merge=merge,
|
| 385 |
+
state_dict=state_dict)
|
| 386 |
+
|
| 387 |
+
return model
|
| 388 |
+
|
clip/custom_medclip.py
ADDED
|
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import math
|
| 3 |
+
from typing import List, Tuple
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from torchvision.models import resnet50, ResNet
|
| 9 |
+
|
| 10 |
+
from .clip import load, tokenize
|
| 11 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
| 12 |
+
from data.imagnet_prompts import imagenet_classes
|
| 13 |
+
from data.fewshot_datasets import fewshot_datasets
|
| 14 |
+
from data.cls_to_names import *
|
| 15 |
+
# from data.medclip_datasets_clsnames import *
|
| 16 |
+
import os
|
| 17 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 18 |
+
_tokenizer = _Tokenizer()
|
| 19 |
+
|
| 20 |
+
DOWNLOAD_ROOT='~/.cache/clip'
|
| 21 |
+
|
| 22 |
+
# class ClipImageEncoder(nn.Module):
|
| 23 |
+
# def __init__(self, device, arch="ViT-L/14", image_resolution=224, n_class=1000):
|
| 24 |
+
# super(ClipImageEncoder, self).__init__()
|
| 25 |
+
# clip, embed_dim, _ = load(arch, device=device, download_root=DOWNLOAD_ROOT)
|
| 26 |
+
# self.encoder = clip.visual
|
| 27 |
+
# del clip.transformer
|
| 28 |
+
# torch.cuda.empty_cache()
|
| 29 |
+
|
| 30 |
+
# self.cls_head = nn.Linear(embed_dim, n_class)
|
| 31 |
+
|
| 32 |
+
# @property
|
| 33 |
+
# def dtype(self):
|
| 34 |
+
# return self.encoder.conv1.weight.dtype
|
| 35 |
+
|
| 36 |
+
# def forward(self, image):
|
| 37 |
+
# x = self.encoder(image.type(self.dtype))
|
| 38 |
+
# output = self.cls_head(x)
|
| 39 |
+
# return output
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class TextEncoder(nn.Module):
|
| 43 |
+
def __init__(self, medclip_text_model):
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.medclip_text_model = medclip_text_model
|
| 46 |
+
|
| 47 |
+
def forward(self, prompts_embeddings, tokenized_prompts):
|
| 48 |
+
|
| 49 |
+
output = self.medclip_text_model.model(inputs_embeds=prompts_embeddings, attention_mask=tokenized_prompts['attention_mask'])
|
| 50 |
+
|
| 51 |
+
# take the average of last four layers
|
| 52 |
+
# last_hidden_states = torch.stack(output['hidden_states'][-self.last_n_layer:]) # n_layer, batch, seqlen, emb_dim
|
| 53 |
+
# embed = last_hidden_states.permute(1,0,2,3)
|
| 54 |
+
# embed = embed.mean(1).mean(1) # pooling
|
| 55 |
+
|
| 56 |
+
# get 1+2+last layer
|
| 57 |
+
last_hidden_states = torch.stack([output['hidden_states'][1], output['hidden_states'][2], output['hidden_states'][-1]]) # n_layer, batch, seqlen, emb_dim
|
| 58 |
+
embed = last_hidden_states.permute(1,0,2,3).mean(2).mean(1) # pooling
|
| 59 |
+
|
| 60 |
+
# let's take only the last hidden layer
|
| 61 |
+
# embed = output['pooler_output']
|
| 62 |
+
|
| 63 |
+
embed = self.medclip_text_model.projection_head(embed)
|
| 64 |
+
return embed
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class PromptLearner(nn.Module):
|
| 68 |
+
def __init__(self, medclip_model, classnames, device, batch_size=None, n_ctx=16, ctx_init=None, ctx_position='end', learned_cls=False):
|
| 69 |
+
super().__init__()
|
| 70 |
+
n_cls = len(classnames)
|
| 71 |
+
self.learned_cls = learned_cls
|
| 72 |
+
dtype = medclip_model.dtype
|
| 73 |
+
self.dtype = dtype
|
| 74 |
+
ctx_dim = 768 # hardcoded for now!!! medclip_model.ln_final.weight.shape[0]
|
| 75 |
+
self.ctx_dim = ctx_dim
|
| 76 |
+
self.batch_size = batch_size
|
| 77 |
+
self.device = device
|
| 78 |
+
self.medclip_model = medclip_model
|
| 79 |
+
|
| 80 |
+
# self.ctx, prompt_prefix = self.reset_prompt(ctx_dim, ctx_init, medclip_model)
|
| 81 |
+
|
| 82 |
+
if ctx_init:
|
| 83 |
+
# raise NotImplementedError("This part is not yet implemented.")
|
| 84 |
+
# use given words to initialize context vectors
|
| 85 |
+
print("Initializing the contect with given words: [{}]".format(ctx_init))
|
| 86 |
+
# breakpoint()
|
| 87 |
+
ctx_init = ctx_init.replace("_", " ")
|
| 88 |
+
if '[CLS]' in ctx_init:
|
| 89 |
+
ctx_list = ctx_init.split(" ")
|
| 90 |
+
split_idx = ctx_list.index("[CLS]")
|
| 91 |
+
ctx_init = ctx_init.replace("[CLS] ", "")
|
| 92 |
+
ctx_position = "middle"
|
| 93 |
+
else:
|
| 94 |
+
split_idx = None
|
| 95 |
+
self.split_idx = split_idx
|
| 96 |
+
n_ctx = len(ctx_init.split(" "))
|
| 97 |
+
|
| 98 |
+
# prompt = tokenize(ctx_init).to(self.device)
|
| 99 |
+
prompt = ctx_init
|
| 100 |
+
tokenized_prompts = medclip_model.text_model.tokenizer(prompt, padding='max_length', max_length=25, truncation=True, return_tensors='pt').to(self.device)
|
| 101 |
+
prompts_tokens = tokenized_prompts['input_ids'] # [n_cls, 77]
|
| 102 |
+
with torch.no_grad():
|
| 103 |
+
embedding = medclip_model.text_model.model.embeddings.word_embeddings(prompts_tokens).type(dtype) # [n_cls, 77, 768]
|
| 104 |
+
# embedding = medclip_model.token_embedding(prompt).type(dtype)
|
| 105 |
+
ctx_vectors = embedding[0, 1 : 1 + n_ctx, :]
|
| 106 |
+
prompt_prefix = ctx_init
|
| 107 |
+
else:
|
| 108 |
+
print("Random initialization: initializing a generic context")
|
| 109 |
+
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
|
| 110 |
+
nn.init.normal_(ctx_vectors, std=0.02)
|
| 111 |
+
prompt_prefix = " ".join(["X"] * n_ctx)
|
| 112 |
+
|
| 113 |
+
self.prompt_prefix = prompt_prefix
|
| 114 |
+
|
| 115 |
+
print(f'Initial context: "{prompt_prefix}"')
|
| 116 |
+
print(f"Number of context words (tokens): {n_ctx}")
|
| 117 |
+
|
| 118 |
+
# batch-wise prompt tuning for test-time adaptation
|
| 119 |
+
if self.batch_size is not None:
|
| 120 |
+
ctx_vectors = ctx_vectors.repeat(batch_size, 1, 1) #(N, L, D)
|
| 121 |
+
self.ctx_init_state = ctx_vectors.detach().clone()
|
| 122 |
+
self.ctx = nn.Parameter(ctx_vectors) # to be optimized
|
| 123 |
+
|
| 124 |
+
if not self.learned_cls:
|
| 125 |
+
classnames = [name.replace("_", " ") for name in classnames]
|
| 126 |
+
name_lens = [len(medclip_model.text_model.tokenizer.encode(name))-2 for name in classnames] # [CLS] and [SEP] are not counted
|
| 127 |
+
prompts = [prompt_prefix + " " + name + "." for name in classnames]
|
| 128 |
+
else:
|
| 129 |
+
print("Random initialization: initializing a learnable class token")
|
| 130 |
+
cls_vectors = torch.empty(n_cls, 1, ctx_dim, dtype=dtype) # assume each learnable cls_token is only 1 word
|
| 131 |
+
nn.init.normal_(cls_vectors, std=0.02)
|
| 132 |
+
cls_token = "X"
|
| 133 |
+
name_lens = [1 for _ in classnames]
|
| 134 |
+
prompts = [prompt_prefix + " " + cls_token + "." for _ in classnames]
|
| 135 |
+
|
| 136 |
+
self.cls_init_state = cls_vectors.detach().clone()
|
| 137 |
+
self.cls = nn.Parameter(cls_vectors) # to be optimized
|
| 138 |
+
|
| 139 |
+
tokenized_prompts = medclip_model.text_model.tokenizer(prompts, padding='max_length', max_length=25, truncation=True, return_tensors='pt').to(self.device)
|
| 140 |
+
prompts_tokens = tokenized_prompts['input_ids'] # [n_cls, 77]
|
| 141 |
+
with torch.no_grad():
|
| 142 |
+
embedding = medclip_model.text_model.model.embeddings.word_embeddings(prompts_tokens).type(dtype) # [n_cls, 77, 768]
|
| 143 |
+
|
| 144 |
+
# These token vectors will be saved when in save_model(),
|
| 145 |
+
# but they should be ignored in load_model() as we want to use
|
| 146 |
+
# those computed using the current class names
|
| 147 |
+
self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS
|
| 148 |
+
if self.learned_cls:
|
| 149 |
+
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx + 1:, :]) # ..., EOS
|
| 150 |
+
else:
|
| 151 |
+
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx :, :]) # CLS, EOS
|
| 152 |
+
|
| 153 |
+
self.ctx_init = ctx_init
|
| 154 |
+
self.tokenized_prompts = tokenized_prompts # torch.Tensor
|
| 155 |
+
self.name_lens = name_lens
|
| 156 |
+
self.class_token_position = ctx_position
|
| 157 |
+
self.n_cls = n_cls
|
| 158 |
+
self.n_ctx = n_ctx
|
| 159 |
+
self.classnames = classnames
|
| 160 |
+
|
| 161 |
+
def reset(self):
|
| 162 |
+
ctx_vectors = self.ctx_init_state
|
| 163 |
+
self.ctx.copy_(ctx_vectors) # to be optimized
|
| 164 |
+
if self.learned_cls:
|
| 165 |
+
cls_vectors = self.cls_init_state
|
| 166 |
+
self.cls.copy_(cls_vectors)
|
| 167 |
+
|
| 168 |
+
def reset_classnames(self, classnames, arch):
|
| 169 |
+
self.n_cls = len(classnames)
|
| 170 |
+
if not self.learned_cls:
|
| 171 |
+
classnames = [name.replace("_", " ") for name in classnames]
|
| 172 |
+
name_lens = [len(self.medclip_model.text_model.tokenizer.encode(name))-2 for name in classnames] # [CLS] and [SEP] are not counted
|
| 173 |
+
prompts = [self.prompt_prefix + " " + name + "." for name in classnames]
|
| 174 |
+
else:
|
| 175 |
+
cls_vectors = torch.empty(self.n_cls, 1, self.ctx_dim, dtype=self.dtype) # assume each learnable cls_token is only 1 word
|
| 176 |
+
nn.init.normal_(cls_vectors, std=0.02)
|
| 177 |
+
cls_token = "X"
|
| 178 |
+
name_lens = [1 for _ in classnames]
|
| 179 |
+
prompts = [self.prompt_prefix + " " + cls_token + "." for _ in classnames]
|
| 180 |
+
|
| 181 |
+
self.cls_init_state = cls_vectors.detach().clone()
|
| 182 |
+
|
| 183 |
+
tokenized_prompts = self.medclip_model.text_model.tokenizer(prompts, padding='max_length', max_length=25, truncation=True, return_tensors='pt').to(self.device)
|
| 184 |
+
prompts_tokens = tokenized_prompts['input_ids']
|
| 185 |
+
|
| 186 |
+
with torch.no_grad():
|
| 187 |
+
embedding = self.medclip_model.text_model.model.embeddings.word_embeddings(prompts_tokens).type(self.dtype) # [n_cls, 77, 768]
|
| 188 |
+
|
| 189 |
+
self.token_prefix = embedding[:, :1, :]
|
| 190 |
+
self.token_suffix = embedding[:, 1 + self.n_ctx :, :] # CLS, EOS
|
| 191 |
+
|
| 192 |
+
self.name_lens = name_lens
|
| 193 |
+
self.tokenized_prompts = tokenized_prompts
|
| 194 |
+
self.classnames = classnames
|
| 195 |
+
|
| 196 |
+
def forward(self, init=None):
|
| 197 |
+
# the init will be used when computing CLIP directional loss
|
| 198 |
+
if init is not None:
|
| 199 |
+
ctx = init
|
| 200 |
+
else:
|
| 201 |
+
ctx = self.ctx
|
| 202 |
+
if ctx.dim() == 2:
|
| 203 |
+
ctx = ctx.unsqueeze(0).expand(self.n_cls, -1, -1)
|
| 204 |
+
elif not ctx.size()[0] == self.n_cls:
|
| 205 |
+
ctx = ctx.unsqueeze(1).expand(-1, self.n_cls, -1, -1)
|
| 206 |
+
|
| 207 |
+
prefix = self.token_prefix
|
| 208 |
+
suffix = self.token_suffix
|
| 209 |
+
if self.batch_size is not None:
|
| 210 |
+
# This way only works for single-gpu setting (could pass batch size as an argument for forward())
|
| 211 |
+
prefix = prefix.repeat(self.batch_size, 1, 1, 1)
|
| 212 |
+
suffix = suffix.repeat(self.batch_size, 1, 1, 1)
|
| 213 |
+
|
| 214 |
+
if self.learned_cls:
|
| 215 |
+
assert self.class_token_position == "end"
|
| 216 |
+
if self.class_token_position == "end":
|
| 217 |
+
if self.learned_cls:
|
| 218 |
+
cls = self.cls
|
| 219 |
+
prompts = torch.cat(
|
| 220 |
+
[
|
| 221 |
+
prefix, # (n_cls, 1, dim)
|
| 222 |
+
ctx, # (n_cls, n_ctx, dim)
|
| 223 |
+
cls, # (n_cls, 1, dim)
|
| 224 |
+
suffix, # (n_cls, *, dim)
|
| 225 |
+
],
|
| 226 |
+
dim=-2,
|
| 227 |
+
)
|
| 228 |
+
else:
|
| 229 |
+
prompts = torch.cat(
|
| 230 |
+
[
|
| 231 |
+
prefix, # (n_cls, 1, dim)
|
| 232 |
+
ctx, # (n_cls, n_ctx, dim)
|
| 233 |
+
suffix, # (n_cls, *, dim)
|
| 234 |
+
],
|
| 235 |
+
dim=-2,
|
| 236 |
+
)
|
| 237 |
+
elif self.class_token_position == "middle":
|
| 238 |
+
# TODO: to work with a batch of prompts
|
| 239 |
+
if self.split_idx is not None:
|
| 240 |
+
half_n_ctx = self.split_idx # split the ctx at the position of [CLS] in `ctx_init`
|
| 241 |
+
else:
|
| 242 |
+
half_n_ctx = self.n_ctx // 2
|
| 243 |
+
prompts = []
|
| 244 |
+
for i in range(self.n_cls):
|
| 245 |
+
name_len = self.name_lens[i]
|
| 246 |
+
prefix_i = prefix[i : i + 1, :, :]
|
| 247 |
+
class_i = suffix[i : i + 1, :name_len, :]
|
| 248 |
+
suffix_i = suffix[i : i + 1, name_len:, :]
|
| 249 |
+
ctx_i_half1 = ctx[i : i + 1, :half_n_ctx, :]
|
| 250 |
+
ctx_i_half2 = ctx[i : i + 1, half_n_ctx:, :]
|
| 251 |
+
prompt = torch.cat(
|
| 252 |
+
[
|
| 253 |
+
prefix_i, # (1, 1, dim)
|
| 254 |
+
ctx_i_half1, # (1, n_ctx//2, dim)
|
| 255 |
+
class_i, # (1, name_len, dim)
|
| 256 |
+
ctx_i_half2, # (1, n_ctx//2, dim)
|
| 257 |
+
suffix_i, # (1, *, dim)
|
| 258 |
+
],
|
| 259 |
+
dim=1,
|
| 260 |
+
)
|
| 261 |
+
prompts.append(prompt)
|
| 262 |
+
prompts = torch.cat(prompts, dim=0)
|
| 263 |
+
|
| 264 |
+
elif self.class_token_position == "front":
|
| 265 |
+
prompts = []
|
| 266 |
+
for i in range(self.n_cls):
|
| 267 |
+
name_len = self.name_lens[i]
|
| 268 |
+
prefix_i = prefix[i : i + 1, :, :]
|
| 269 |
+
class_i = suffix[i : i + 1, :name_len, :]
|
| 270 |
+
suffix_i = suffix[i : i + 1, name_len:, :]
|
| 271 |
+
ctx_i = ctx[i : i + 1, :, :]
|
| 272 |
+
prompt = torch.cat(
|
| 273 |
+
[
|
| 274 |
+
prefix_i, # (1, 1, dim)
|
| 275 |
+
class_i, # (1, name_len, dim)
|
| 276 |
+
ctx_i, # (1, n_ctx, dim)
|
| 277 |
+
suffix_i, # (1, *, dim)
|
| 278 |
+
],
|
| 279 |
+
dim=1,
|
| 280 |
+
)
|
| 281 |
+
prompts.append(prompt)
|
| 282 |
+
prompts = torch.cat(prompts, dim=0)
|
| 283 |
+
|
| 284 |
+
else:
|
| 285 |
+
raise ValueError
|
| 286 |
+
|
| 287 |
+
return prompts
|
| 288 |
+
|
| 289 |
+
from MedCLIP.medclip import MedCLIPModel, MedCLIPVisionModel, MedCLIPVisionModelViT
|
| 290 |
+
from MedCLIP.medclip import MedCLIPProcessor
|
| 291 |
+
|
| 292 |
+
def load_medclip_to_cpu():
|
| 293 |
+
model = MedCLIPModel(vision_cls=MedCLIPVisionModelViT)
|
| 294 |
+
model.from_pretrained()
|
| 295 |
+
# breakpoint()
|
| 296 |
+
# model.from_pretrained("/l/users/asif.hanif/pre-trained-models/vlps/medclip/pretrained/medclip-vit/")
|
| 297 |
+
model.from_pretrained("./MedCLIP/pretrained/medclip-vit/")
|
| 298 |
+
# for vit
|
| 299 |
+
model.dtype = model.vision_model.model.embeddings.patch_embeddings.projection.weight.dtype
|
| 300 |
+
# for Resnet
|
| 301 |
+
# model.dtype = model.vision_model.model.conv1.weight.dtype
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
model.eval()
|
| 305 |
+
return model
|
| 306 |
+
|
| 307 |
+
class ClipTestTimeTuning(nn.Module):
|
| 308 |
+
def __init__(self, device, classnames, batch_size, criterion='cosine', arch="ViT-L/14",
|
| 309 |
+
n_ctx=16, ctx_init=None, ctx_position='end', learned_cls=False):
|
| 310 |
+
super(ClipTestTimeTuning, self).__init__()
|
| 311 |
+
self.device = device
|
| 312 |
+
self.medclip_model = load_medclip_to_cpu()
|
| 313 |
+
self.dtype = self.medclip_model.dtype
|
| 314 |
+
self.medclip_model = self.medclip_model.to(self.device)
|
| 315 |
+
self.image_encoder = self.medclip_model.vision_model
|
| 316 |
+
self.text_encoder = TextEncoder(self.medclip_model.text_model)
|
| 317 |
+
self.logit_scale = self.medclip_model.logit_scale.data
|
| 318 |
+
# prompt tuning
|
| 319 |
+
self.prompt_learner = PromptLearner(self.medclip_model, classnames, self.device, batch_size, n_ctx, ctx_init, ctx_position, learned_cls)
|
| 320 |
+
self.criterion = criterion
|
| 321 |
+
self.l2_norm_cal = False
|
| 322 |
+
|
| 323 |
+
# @property
|
| 324 |
+
# def dtype(self):
|
| 325 |
+
# return self.image_encoder.conv1.weight.dtype
|
| 326 |
+
|
| 327 |
+
# restore the initial state of the prompt_learner (tunable prompt)
|
| 328 |
+
def reset(self):
|
| 329 |
+
self.prompt_learner.reset()
|
| 330 |
+
|
| 331 |
+
def reset_classnames(self, classnames, arch):
|
| 332 |
+
self.prompt_learner.reset_classnames(classnames, arch)
|
| 333 |
+
|
| 334 |
+
def get_text_features(self):
|
| 335 |
+
text_features = []
|
| 336 |
+
prompts = self.prompt_learner()
|
| 337 |
+
tokenized_prompts = self.prompt_learner.tokenized_prompts
|
| 338 |
+
t_features = self.text_encoder(prompts, tokenized_prompts)
|
| 339 |
+
text_features.append(t_features / t_features.norm(dim=-1, keepdim=True))
|
| 340 |
+
text_features = torch.stack(text_features, dim=0)
|
| 341 |
+
|
| 342 |
+
return torch.mean(text_features, dim=0)
|
| 343 |
+
|
| 344 |
+
def inference(self, image):
|
| 345 |
+
with torch.no_grad():
|
| 346 |
+
image_features = self.image_encoder(image.type(self.dtype))
|
| 347 |
+
|
| 348 |
+
text_features = self.get_text_features()
|
| 349 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
| 350 |
+
|
| 351 |
+
#[c-tpt] --------------------------------------------
|
| 352 |
+
if self.l2_norm_cal:
|
| 353 |
+
prompt_mean = text_features.mean(0)
|
| 354 |
+
feature_distance = text_features - prompt_mean
|
| 355 |
+
l2_norm = torch.linalg.norm(feature_distance, dim=-1)
|
| 356 |
+
l2_norm_mean = l2_norm.mean()
|
| 357 |
+
|
| 358 |
+
#for saving to csv file
|
| 359 |
+
self.l2_norm_mean = l2_norm_mean.item()
|
| 360 |
+
|
| 361 |
+
#for training
|
| 362 |
+
self.l2_norm_mean_training = l2_norm_mean
|
| 363 |
+
|
| 364 |
+
#-----------------------------------------------------
|
| 365 |
+
|
| 366 |
+
logit_scale = self.logit_scale.exp()
|
| 367 |
+
logits = logit_scale * image_features @ text_features.t()
|
| 368 |
+
|
| 369 |
+
return logits
|
| 370 |
+
|
| 371 |
+
def forward(self, input):
|
| 372 |
+
# breakpoint()
|
| 373 |
+
if isinstance(input, Tuple):
|
| 374 |
+
view_0, view_1, view_2 = input
|
| 375 |
+
return self.contrast_prompt_tuning(view_0, view_1, view_2)
|
| 376 |
+
elif len(input.size()) == 2:
|
| 377 |
+
return self.directional_prompt_tuning(input)
|
| 378 |
+
else:
|
| 379 |
+
return self.inference(input)
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
def get_coop(clip_arch, test_set, device, n_ctx, ctx_init=None, learned_cls=False):
|
| 383 |
+
classnames = eval("{}_classes".format(test_set.lower()))
|
| 384 |
+
|
| 385 |
+
model = ClipTestTimeTuning(device, classnames, None, arch=clip_arch,
|
| 386 |
+
n_ctx=n_ctx, ctx_init=ctx_init, learned_cls=learned_cls)
|
| 387 |
+
|
| 388 |
+
return model
|
| 389 |
+
|
clip/model.py
ADDED
|
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import OrderedDict
|
| 2 |
+
from typing import Tuple, Union
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from torch import nn
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class Bottleneck(nn.Module):
|
| 11 |
+
expansion = 4
|
| 12 |
+
|
| 13 |
+
def __init__(self, inplanes, planes, stride=1):
|
| 14 |
+
super().__init__()
|
| 15 |
+
|
| 16 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
| 17 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
| 18 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
| 19 |
+
self.relu1 = nn.ReLU(inplace=True)
|
| 20 |
+
|
| 21 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
| 22 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 23 |
+
self.relu2 = nn.ReLU(inplace=True)
|
| 24 |
+
|
| 25 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
| 26 |
+
|
| 27 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
| 28 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
| 29 |
+
self.relu3 = nn.ReLU(inplace=True)
|
| 30 |
+
|
| 31 |
+
self.downsample = None
|
| 32 |
+
self.stride = stride
|
| 33 |
+
|
| 34 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
| 35 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
| 36 |
+
self.downsample = nn.Sequential(OrderedDict([
|
| 37 |
+
("-1", nn.AvgPool2d(stride)),
|
| 38 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
| 39 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
| 40 |
+
]))
|
| 41 |
+
|
| 42 |
+
def forward(self, x: torch.Tensor):
|
| 43 |
+
identity = x
|
| 44 |
+
|
| 45 |
+
out = self.relu1(self.bn1(self.conv1(x)))
|
| 46 |
+
out = self.relu2(self.bn2(self.conv2(out)))
|
| 47 |
+
out = self.avgpool(out)
|
| 48 |
+
out = self.bn3(self.conv3(out))
|
| 49 |
+
|
| 50 |
+
if self.downsample is not None:
|
| 51 |
+
identity = self.downsample(x)
|
| 52 |
+
|
| 53 |
+
out += identity
|
| 54 |
+
out = self.relu3(out)
|
| 55 |
+
return out
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class AttentionPool2d(nn.Module):
|
| 59 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
| 60 |
+
super().__init__()
|
| 61 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
| 62 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
| 63 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
| 64 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
| 65 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
| 66 |
+
self.num_heads = num_heads
|
| 67 |
+
|
| 68 |
+
def forward(self, x):
|
| 69 |
+
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
|
| 70 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
| 71 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
| 72 |
+
x, _ = F.multi_head_attention_forward(
|
| 73 |
+
query=x[:1], key=x, value=x,
|
| 74 |
+
embed_dim_to_check=x.shape[-1],
|
| 75 |
+
num_heads=self.num_heads,
|
| 76 |
+
q_proj_weight=self.q_proj.weight,
|
| 77 |
+
k_proj_weight=self.k_proj.weight,
|
| 78 |
+
v_proj_weight=self.v_proj.weight,
|
| 79 |
+
in_proj_weight=None,
|
| 80 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
| 81 |
+
bias_k=None,
|
| 82 |
+
bias_v=None,
|
| 83 |
+
add_zero_attn=False,
|
| 84 |
+
dropout_p=0,
|
| 85 |
+
out_proj_weight=self.c_proj.weight,
|
| 86 |
+
out_proj_bias=self.c_proj.bias,
|
| 87 |
+
use_separate_proj_weight=True,
|
| 88 |
+
training=self.training,
|
| 89 |
+
need_weights=False
|
| 90 |
+
)
|
| 91 |
+
return x.squeeze(0)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
class ModifiedResNet(nn.Module):
|
| 95 |
+
"""
|
| 96 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
| 97 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
| 98 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
| 99 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
| 100 |
+
"""
|
| 101 |
+
|
| 102 |
+
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
| 103 |
+
super().__init__()
|
| 104 |
+
self.output_dim = output_dim
|
| 105 |
+
self.input_resolution = input_resolution
|
| 106 |
+
|
| 107 |
+
# the 3-layer stem
|
| 108 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
| 109 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
| 110 |
+
self.relu1 = nn.ReLU(inplace=True)
|
| 111 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
| 112 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
| 113 |
+
self.relu2 = nn.ReLU(inplace=True)
|
| 114 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
| 115 |
+
self.bn3 = nn.BatchNorm2d(width)
|
| 116 |
+
self.relu3 = nn.ReLU(inplace=True)
|
| 117 |
+
self.avgpool = nn.AvgPool2d(2)
|
| 118 |
+
|
| 119 |
+
# residual layers
|
| 120 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
| 121 |
+
self.layer1 = self._make_layer(width, layers[0])
|
| 122 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
| 123 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
| 124 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
| 125 |
+
|
| 126 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
| 127 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
| 128 |
+
|
| 129 |
+
def _make_layer(self, planes, blocks, stride=1):
|
| 130 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
| 131 |
+
|
| 132 |
+
self._inplanes = planes * Bottleneck.expansion
|
| 133 |
+
for _ in range(1, blocks):
|
| 134 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
| 135 |
+
|
| 136 |
+
return nn.Sequential(*layers)
|
| 137 |
+
|
| 138 |
+
def forward(self, x):
|
| 139 |
+
def stem(x):
|
| 140 |
+
x = self.relu1(self.bn1(self.conv1(x)))
|
| 141 |
+
x = self.relu2(self.bn2(self.conv2(x)))
|
| 142 |
+
x = self.relu3(self.bn3(self.conv3(x)))
|
| 143 |
+
x = self.avgpool(x)
|
| 144 |
+
return x
|
| 145 |
+
|
| 146 |
+
x = x.type(self.conv1.weight.dtype)
|
| 147 |
+
x = stem(x)
|
| 148 |
+
x = self.layer1(x)
|
| 149 |
+
x = self.layer2(x)
|
| 150 |
+
x = self.layer3(x)
|
| 151 |
+
x = self.layer4(x)
|
| 152 |
+
x = self.attnpool(x)
|
| 153 |
+
|
| 154 |
+
return x
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
class LayerNorm(nn.LayerNorm):
|
| 158 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
| 159 |
+
|
| 160 |
+
def forward(self, x: torch.Tensor):
|
| 161 |
+
orig_type = x.dtype
|
| 162 |
+
ret = super().forward(x.type(torch.float32))
|
| 163 |
+
return ret.type(orig_type)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
class QuickGELU(nn.Module):
|
| 167 |
+
def forward(self, x: torch.Tensor):
|
| 168 |
+
return x * torch.sigmoid(1.702 * x)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
class ResidualAttentionBlock(nn.Module):
|
| 172 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
| 173 |
+
super().__init__()
|
| 174 |
+
|
| 175 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
| 176 |
+
self.ln_1 = LayerNorm(d_model)
|
| 177 |
+
self.mlp = nn.Sequential(OrderedDict([
|
| 178 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
| 179 |
+
("gelu", QuickGELU()),
|
| 180 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
| 181 |
+
]))
|
| 182 |
+
self.ln_2 = LayerNorm(d_model)
|
| 183 |
+
self.attn_mask = attn_mask
|
| 184 |
+
|
| 185 |
+
def attention(self, x: torch.Tensor):
|
| 186 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
| 187 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
| 188 |
+
|
| 189 |
+
def forward(self, x: torch.Tensor):
|
| 190 |
+
x = x + self.attention(self.ln_1(x))
|
| 191 |
+
x = x + self.mlp(self.ln_2(x))
|
| 192 |
+
return x
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
class Transformer(nn.Module):
|
| 196 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
| 197 |
+
super().__init__()
|
| 198 |
+
self.width = width
|
| 199 |
+
self.layers = layers
|
| 200 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
| 201 |
+
|
| 202 |
+
def forward(self, x: torch.Tensor):
|
| 203 |
+
return self.resblocks(x)
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
class VisionTransformer(nn.Module):
|
| 207 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
| 208 |
+
super().__init__()
|
| 209 |
+
self.input_resolution = input_resolution
|
| 210 |
+
self.output_dim = output_dim
|
| 211 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
| 212 |
+
|
| 213 |
+
scale = width ** -0.5
|
| 214 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
| 215 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
| 216 |
+
self.ln_pre = LayerNorm(width)
|
| 217 |
+
|
| 218 |
+
self.transformer = Transformer(width, layers, heads)
|
| 219 |
+
|
| 220 |
+
self.ln_post = LayerNorm(width)
|
| 221 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
| 222 |
+
|
| 223 |
+
def forward(self, x: torch.Tensor):
|
| 224 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
| 225 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
| 226 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
| 227 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
| 228 |
+
x = x + self.positional_embedding.to(x.dtype)
|
| 229 |
+
x = self.ln_pre(x)
|
| 230 |
+
|
| 231 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 232 |
+
x = self.transformer(x)
|
| 233 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 234 |
+
|
| 235 |
+
x = self.ln_post(x[:, 0, :])
|
| 236 |
+
|
| 237 |
+
if self.proj is not None:
|
| 238 |
+
x = x @ self.proj
|
| 239 |
+
|
| 240 |
+
return x
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
class CLIP(nn.Module):
|
| 244 |
+
def __init__(self,
|
| 245 |
+
embed_dim: int,
|
| 246 |
+
# vision
|
| 247 |
+
image_resolution: int,
|
| 248 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
| 249 |
+
vision_width: int,
|
| 250 |
+
vision_patch_size: int,
|
| 251 |
+
# text
|
| 252 |
+
context_length: int,
|
| 253 |
+
vocab_size: int,
|
| 254 |
+
transformer_width: int,
|
| 255 |
+
transformer_heads: int,
|
| 256 |
+
transformer_layers: int
|
| 257 |
+
):
|
| 258 |
+
super().__init__()
|
| 259 |
+
|
| 260 |
+
self.context_length = context_length
|
| 261 |
+
|
| 262 |
+
if isinstance(vision_layers, (tuple, list)):
|
| 263 |
+
vision_heads = vision_width * 32 // 64
|
| 264 |
+
self.visual = ModifiedResNet(
|
| 265 |
+
layers=vision_layers,
|
| 266 |
+
output_dim=embed_dim,
|
| 267 |
+
heads=vision_heads,
|
| 268 |
+
input_resolution=image_resolution,
|
| 269 |
+
width=vision_width
|
| 270 |
+
)
|
| 271 |
+
else:
|
| 272 |
+
vision_heads = vision_width // 64
|
| 273 |
+
self.visual = VisionTransformer(
|
| 274 |
+
input_resolution=image_resolution,
|
| 275 |
+
patch_size=vision_patch_size,
|
| 276 |
+
width=vision_width,
|
| 277 |
+
layers=vision_layers,
|
| 278 |
+
heads=vision_heads,
|
| 279 |
+
output_dim=embed_dim
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
self.transformer = Transformer(
|
| 283 |
+
width=transformer_width,
|
| 284 |
+
layers=transformer_layers,
|
| 285 |
+
heads=transformer_heads,
|
| 286 |
+
attn_mask=self.build_attention_mask()
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
self.vocab_size = vocab_size
|
| 290 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
| 291 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
| 292 |
+
self.ln_final = LayerNorm(transformer_width)
|
| 293 |
+
|
| 294 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
| 295 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
| 296 |
+
|
| 297 |
+
self.initialize_parameters()
|
| 298 |
+
|
| 299 |
+
def initialize_parameters(self):
|
| 300 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
| 301 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
| 302 |
+
|
| 303 |
+
if isinstance(self.visual, ModifiedResNet):
|
| 304 |
+
if self.visual.attnpool is not None:
|
| 305 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
| 306 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
| 307 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
| 308 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
| 309 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
| 310 |
+
|
| 311 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
| 312 |
+
for name, param in resnet_block.named_parameters():
|
| 313 |
+
if name.endswith("bn3.weight"):
|
| 314 |
+
nn.init.zeros_(param)
|
| 315 |
+
|
| 316 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
| 317 |
+
attn_std = self.transformer.width ** -0.5
|
| 318 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
| 319 |
+
for block in self.transformer.resblocks:
|
| 320 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
| 321 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
| 322 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
| 323 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
| 324 |
+
|
| 325 |
+
if self.text_projection is not None:
|
| 326 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
| 327 |
+
|
| 328 |
+
def build_attention_mask(self):
|
| 329 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
| 330 |
+
# pytorch uses additive attention mask; fill with -inf
|
| 331 |
+
mask = torch.empty(self.context_length, self.context_length)
|
| 332 |
+
mask.fill_(float("-inf"))
|
| 333 |
+
mask.triu_(1) # zero out the lower diagonal
|
| 334 |
+
return mask
|
| 335 |
+
|
| 336 |
+
@property
|
| 337 |
+
def dtype(self):
|
| 338 |
+
return self.visual.conv1.weight.dtype
|
| 339 |
+
|
| 340 |
+
def encode_image(self, image):
|
| 341 |
+
return self.visual(image.type(self.dtype))
|
| 342 |
+
|
| 343 |
+
def encode_text(self, text):
|
| 344 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
| 345 |
+
|
| 346 |
+
x = x + self.positional_embedding.type(self.dtype)
|
| 347 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
| 348 |
+
x = self.transformer(x)
|
| 349 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
| 350 |
+
x = self.ln_final(x).type(self.dtype)
|
| 351 |
+
|
| 352 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
| 353 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
| 354 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
| 355 |
+
|
| 356 |
+
return x
|
| 357 |
+
|
| 358 |
+
def forward(self, image, text):
|
| 359 |
+
image_features = self.encode_image(image)
|
| 360 |
+
text_features = self.encode_text(text)
|
| 361 |
+
|
| 362 |
+
# normalized features
|
| 363 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
| 364 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
| 365 |
+
|
| 366 |
+
# cosine similarity as logits
|
| 367 |
+
logit_scale = self.logit_scale.exp()
|
| 368 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
| 369 |
+
logits_per_text = logits_per_image.t()
|
| 370 |
+
|
| 371 |
+
# shape = [global_batch_size, global_batch_size]
|
| 372 |
+
return logits_per_image, logits_per_text
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
def convert_weights(model: nn.Module):
|
| 376 |
+
"""Convert applicable model parameters to fp16"""
|
| 377 |
+
|
| 378 |
+
def _convert_weights_to_fp16(l):
|
| 379 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
| 380 |
+
l.weight.data = l.weight.data.half()
|
| 381 |
+
if l.bias is not None:
|
| 382 |
+
l.bias.data = l.bias.data.half()
|
| 383 |
+
|
| 384 |
+
if isinstance(l, nn.MultiheadAttention):
|
| 385 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
| 386 |
+
tensor = getattr(l, attr)
|
| 387 |
+
if tensor is not None:
|
| 388 |
+
tensor.data = tensor.data.half()
|
| 389 |
+
|
| 390 |
+
for name in ["text_projection", "proj"]:
|
| 391 |
+
if hasattr(l, name):
|
| 392 |
+
attr = getattr(l, name)
|
| 393 |
+
if attr is not None:
|
| 394 |
+
attr.data = attr.data.half()
|
| 395 |
+
|
| 396 |
+
model.apply(_convert_weights_to_fp16)
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
def build_model(state_dict: dict):
|
| 400 |
+
vit = "visual.proj" in state_dict
|
| 401 |
+
|
| 402 |
+
if vit:
|
| 403 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
| 404 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
| 405 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
| 406 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
| 407 |
+
image_resolution = vision_patch_size * grid_size
|
| 408 |
+
else:
|
| 409 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
| 410 |
+
vision_layers = tuple(counts)
|
| 411 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
| 412 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
| 413 |
+
vision_patch_size = None
|
| 414 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
| 415 |
+
image_resolution = output_width * 32
|
| 416 |
+
|
| 417 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
| 418 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
| 419 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
| 420 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
| 421 |
+
transformer_heads = transformer_width // 64
|
| 422 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
|
| 423 |
+
|
| 424 |
+
model = CLIP(
|
| 425 |
+
embed_dim,
|
| 426 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
| 427 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
| 431 |
+
if key in state_dict:
|
| 432 |
+
del state_dict[key]
|
| 433 |
+
|
| 434 |
+
# convert_weights(model)
|
| 435 |
+
model.load_state_dict(state_dict)
|
| 436 |
+
del state_dict
|
| 437 |
+
torch.cuda.empty_cache()
|
| 438 |
+
return model.eval()
|
clip/simple_tokenizer.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gzip
|
| 2 |
+
import html
|
| 3 |
+
import os
|
| 4 |
+
from functools import lru_cache
|
| 5 |
+
|
| 6 |
+
import ftfy
|
| 7 |
+
import regex as re
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@lru_cache()
|
| 11 |
+
def default_bpe():
|
| 12 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
@lru_cache()
|
| 16 |
+
def bytes_to_unicode():
|
| 17 |
+
"""
|
| 18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
| 19 |
+
The reversible bpe codes work on unicode strings.
|
| 20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
| 21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
| 22 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
| 23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
| 24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
| 25 |
+
"""
|
| 26 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
| 27 |
+
cs = bs[:]
|
| 28 |
+
n = 0
|
| 29 |
+
for b in range(2**8):
|
| 30 |
+
if b not in bs:
|
| 31 |
+
bs.append(b)
|
| 32 |
+
cs.append(2**8+n)
|
| 33 |
+
n += 1
|
| 34 |
+
cs = [chr(n) for n in cs]
|
| 35 |
+
return dict(zip(bs, cs))
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_pairs(word):
|
| 39 |
+
"""Return set of symbol pairs in a word.
|
| 40 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
| 41 |
+
"""
|
| 42 |
+
pairs = set()
|
| 43 |
+
prev_char = word[0]
|
| 44 |
+
for char in word[1:]:
|
| 45 |
+
pairs.add((prev_char, char))
|
| 46 |
+
prev_char = char
|
| 47 |
+
return pairs
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def basic_clean(text):
|
| 51 |
+
text = ftfy.fix_text(text)
|
| 52 |
+
text = html.unescape(html.unescape(text))
|
| 53 |
+
return text.strip()
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def whitespace_clean(text):
|
| 57 |
+
text = re.sub(r'\s+', ' ', text)
|
| 58 |
+
text = text.strip()
|
| 59 |
+
return text
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class SimpleTokenizer(object):
|
| 63 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
| 64 |
+
self.byte_encoder = bytes_to_unicode()
|
| 65 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
| 66 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
| 67 |
+
merges = merges[1:49152-256-2+1]
|
| 68 |
+
merges = [tuple(merge.split()) for merge in merges]
|
| 69 |
+
vocab = list(bytes_to_unicode().values())
|
| 70 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
| 71 |
+
for merge in merges:
|
| 72 |
+
vocab.append(''.join(merge))
|
| 73 |
+
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
| 74 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
| 75 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
| 76 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
| 77 |
+
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
| 78 |
+
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
| 79 |
+
|
| 80 |
+
def bpe(self, token):
|
| 81 |
+
if token in self.cache:
|
| 82 |
+
return self.cache[token]
|
| 83 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
| 84 |
+
pairs = get_pairs(word)
|
| 85 |
+
|
| 86 |
+
if not pairs:
|
| 87 |
+
return token+'</w>'
|
| 88 |
+
|
| 89 |
+
while True:
|
| 90 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
| 91 |
+
if bigram not in self.bpe_ranks:
|
| 92 |
+
break
|
| 93 |
+
first, second = bigram
|
| 94 |
+
new_word = []
|
| 95 |
+
i = 0
|
| 96 |
+
while i < len(word):
|
| 97 |
+
try:
|
| 98 |
+
j = word.index(first, i)
|
| 99 |
+
new_word.extend(word[i:j])
|
| 100 |
+
i = j
|
| 101 |
+
except:
|
| 102 |
+
new_word.extend(word[i:])
|
| 103 |
+
break
|
| 104 |
+
|
| 105 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
| 106 |
+
new_word.append(first+second)
|
| 107 |
+
i += 2
|
| 108 |
+
else:
|
| 109 |
+
new_word.append(word[i])
|
| 110 |
+
i += 1
|
| 111 |
+
new_word = tuple(new_word)
|
| 112 |
+
word = new_word
|
| 113 |
+
if len(word) == 1:
|
| 114 |
+
break
|
| 115 |
+
else:
|
| 116 |
+
pairs = get_pairs(word)
|
| 117 |
+
word = ' '.join(word)
|
| 118 |
+
self.cache[token] = word
|
| 119 |
+
return word
|
| 120 |
+
|
| 121 |
+
def encode(self, text):
|
| 122 |
+
bpe_tokens = []
|
| 123 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
| 124 |
+
for token in re.findall(self.pat, text):
|
| 125 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
| 126 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
| 127 |
+
return bpe_tokens
|
| 128 |
+
|
| 129 |
+
def decode(self, tokens):
|
| 130 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
| 131 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
| 132 |
+
return text
|
data/__init__.py
ADDED
|
File without changes
|
data/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (146 Bytes). View file
|
|
|
data/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (162 Bytes). View file
|
|
|
data/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (150 Bytes). View file
|
|
|
data/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (144 Bytes). View file
|
|
|
data/__pycache__/augmix_ops.cpython-310.pyc
ADDED
|
Binary file (3.69 kB). View file
|
|
|
data/__pycache__/augmix_ops.cpython-311.pyc
ADDED
|
Binary file (6.76 kB). View file
|
|
|
data/__pycache__/augmix_ops.cpython-312.pyc
ADDED
|
Binary file (6.24 kB). View file
|
|
|
data/__pycache__/augmix_ops.cpython-39.pyc
ADDED
|
Binary file (3.88 kB). View file
|
|
|
data/__pycache__/cls_to_names.cpython-310.pyc
ADDED
|
Binary file (23.9 kB). View file
|
|
|
data/__pycache__/cls_to_names.cpython-312.pyc
ADDED
|
Binary file (26.6 kB). View file
|
|
|
data/__pycache__/cls_to_names.cpython-39.pyc
ADDED
|
Binary file (19.9 kB). View file
|
|
|