new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 5

LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models

We present LongLoRA, an efficient fine-tuning approach that extends the context sizes of pre-trained large language models (LLMs), with limited computation cost. Typically, training LLMs with long context sizes is computationally expensive, requiring extensive training hours and GPU resources. For example, training on the context length of 8192 needs 16x computational costs in self-attention layers as that of 2048. In this paper, we speed up the context extension of LLMs in two aspects. On the one hand, although dense global attention is needed during inference, fine-tuning the model can be effectively and efficiently done by sparse local attention. The proposed shift short attention effectively enables context extension, leading to non-trivial computation saving with similar performance to fine-tuning with vanilla attention. Particularly, it can be implemented with only two lines of code in training, while being optional in inference. On the other hand, we revisit the parameter-efficient fine-tuning regime for context expansion. Notably, we find that LoRA for context extension works well under the premise of trainable embedding and normalization. LongLoRA demonstrates strong empirical results on various tasks on LLaMA2 models from 7B/13B to 70B. LongLoRA adopts LLaMA2 7B from 4k context to 100k, or LLaMA2 70B to 32k on a single 8x A100 machine. LongLoRA extends models' context while retaining their original architectures, and is compatible with most existing techniques, like FlashAttention-2. In addition, to make LongLoRA practical, we collect a dataset, LongQA, for supervised fine-tuning. It contains more than 3k long context question-answer pairs.

  • 7 authors
·
Sep 21, 2023 9

SimpleGVR: A Simple Baseline for Latent-Cascaded Video Super-Resolution

Latent diffusion models have emerged as a leading paradigm for efficient video generation. However, as user expectations shift toward higher-resolution outputs, relying solely on latent computation becomes inadequate. A promising approach involves decoupling the process into two stages: semantic content generation and detail synthesis. The former employs a computationally intensive base model at lower resolutions, while the latter leverages a lightweight cascaded video super-resolution (VSR) model to achieve high-resolution output. In this work, we focus on studying key design principles for latter cascaded VSR models, which are underexplored currently. First, we propose two degradation strategies to generate training pairs that better mimic the output characteristics of the base model, ensuring alignment between the VSR model and its upstream generator. Second, we provide critical insights into VSR model behavior through systematic analysis of (1) timestep sampling strategies, (2) noise augmentation effects on low-resolution (LR) inputs. These findings directly inform our architectural and training innovations. Finally, we introduce interleaving temporal unit and sparse local attention to achieve efficient training and inference, drastically reducing computational overhead. Extensive experiments demonstrate the superiority of our framework over existing methods, with ablation studies confirming the efficacy of each design choice. Our work establishes a simple yet effective baseline for cascaded video super-resolution generation, offering practical insights to guide future advancements in efficient cascaded synthesis systems.

  • 10 authors
·
Jun 24, 2025 1

Dilated Neighborhood Attention Transformer

Transformers are quickly becoming one of the most heavily applied deep learning architectures across modalities, domains, and tasks. In vision, on top of ongoing efforts into plain transformers, hierarchical transformers have also gained significant attention, thanks to their performance and easy integration into existing frameworks. These models typically employ localized attention mechanisms, such as the sliding-window Neighborhood Attention (NA) or Swin Transformer's Shifted Window Self Attention. While effective at reducing self attention's quadratic complexity, local attention weakens two of the most desirable properties of self attention: long range inter-dependency modeling, and global receptive field. In this paper, we introduce Dilated Neighborhood Attention (DiNA), a natural, flexible and efficient extension to NA that can capture more global context and expand receptive fields exponentially at no additional cost. NA's local attention and DiNA's sparse global attention complement each other, and therefore we introduce Dilated Neighborhood Attention Transformer (DiNAT), a new hierarchical vision transformer built upon both. DiNAT variants enjoy significant improvements over strong baselines such as NAT, Swin, and ConvNeXt. Our large model is faster and ahead of its Swin counterpart by 1.6% box AP in COCO object detection, 1.4% mask AP in COCO instance segmentation, and 1.4% mIoU in ADE20K semantic segmentation. Paired with new frameworks, our large variant is the new state of the art panoptic segmentation model on COCO (58.5 PQ) and ADE20K (49.4 PQ), and instance segmentation model on Cityscapes (45.1 AP) and ADE20K (35.4 AP) (no extra data). It also matches the state of the art specialized semantic segmentation models on ADE20K (58.1 mIoU), and ranks second on Cityscapes (84.5 mIoU) (no extra data).

  • 2 authors
·
Sep 29, 2022

Sparse Modular Activation for Efficient Sequence Modeling

Linear State Space Models (SSMs) have demonstrated strong performance in a variety of sequence modeling tasks due to their efficient encoding of the recurrent structure. However, in more comprehensive tasks like language modeling and machine translation, self-attention-based models still outperform SSMs. Hybrid models employing both SSM and self-attention generally show promising performance, but current approaches apply attention modules statically and uniformly to all elements in the input sequences, leading to sub-optimal quality-efficiency trade-offs. In this work, we introduce Sparse Modular Activation (SMA), a general mechanism enabling neural networks to sparsely and dynamically activate sub-modules for sequence elements in a differentiable manner. Through allowing each element to skip non-activated sub-modules, SMA reduces computation and memory consumption at both training and inference stages of sequence modeling. As a specific instantiation of SMA, we design a novel neural architecture, SeqBoat, which employs SMA to sparsely activate a Gated Attention Unit (GAU) based on the state representations learned from an SSM. By constraining the GAU to only conduct local attention on the activated inputs, SeqBoat can achieve linear inference complexity with theoretically infinite attention span, and provide substantially better quality-efficiency trade-off than the chunking-based models. With experiments on a wide range of tasks, including language modeling, speech classification and long-range arena, SeqBoat brings new state-of-the-art results among hybrid models with linear complexity and reveals the amount of attention needed for each task through the learned sparse activation patterns.

  • 6 authors
·
Jun 19, 2023

Fcaformer: Forward Cross Attention in Hybrid Vision Transformer

Currently, one main research line in designing a more efficient vision transformer is reducing the computational cost of self attention modules by adopting sparse attention or using local attention windows. In contrast, we propose a different approach that aims to improve the performance of transformer-based architectures by densifying the attention pattern. Specifically, we proposed forward cross attention for hybrid vision transformer (FcaFormer), where tokens from previous blocks in the same stage are secondary used. To achieve this, the FcaFormer leverages two innovative components: learnable scale factors (LSFs) and a token merge and enhancement module (TME). The LSFs enable efficient processing of cross tokens, while the TME generates representative cross tokens. By integrating these components, the proposed FcaFormer enhances the interactions of tokens across blocks with potentially different semantics, and encourages more information flows to the lower levels. Based on the forward cross attention (Fca), we have designed a series of FcaFormer models that achieve the best trade-off between model size, computational cost, memory cost, and accuracy. For example, without the need for knowledge distillation to strengthen training, our FcaFormer achieves 83.1% top-1 accuracy on Imagenet with only 16.3 million parameters and about 3.6 billion MACs. This saves almost half of the parameters and a few computational costs while achieving 0.7% higher accuracy compared to distilled EfficientFormer.

  • 3 authors
·
Nov 14, 2022

MetaHGNIE: Meta-Path Induced Hypergraph Contrastive Learning in Heterogeneous Knowledge Graphs

Node importance estimation (NIE) in heterogeneous knowledge graphs is a critical yet challenging task, essential for applications such as recommendation, knowledge reasoning, and question answering. Existing methods often rely on pairwise connections, neglecting high-order dependencies among multiple entities and relations, and they treat structural and semantic signals independently, hindering effective cross-modal integration. To address these challenges, we propose MetaHGNIE, a meta-path induced hypergraph contrastive learning framework for disentangling and aligning structural and semantic information. MetaHGNIE constructs a higher-order knowledge graph via meta-path sequences, where typed hyperedges capture multi-entity relational contexts. Structural dependencies are aggregated with local attention, while semantic representations are encoded through a hypergraph transformer equipped with sparse chunking to reduce redundancy. Finally, a multimodal fusion module integrates structural and semantic embeddings under contrastive learning with auxiliary supervision, ensuring robust cross-modal alignment. Extensive experiments on benchmark NIE datasets demonstrate that MetaHGNIE consistently outperforms state-of-the-art baselines. These results highlight the effectiveness of explicitly modeling higher-order interactions and cross-modal alignment in heterogeneous knowledge graphs. Our code is available at https://github.com/SEU-WENJIA/DualHNIE

  • 7 authors
·
Dec 13, 2025

RelayFormer: A Unified Local-Global Attention Framework for Scalable Image and Video Manipulation Localization

Visual manipulation localization (VML) aims to identify tampered regions in images and videos, a task that has become increasingly challenging with the rise of advanced editing tools. Existing methods face two main issues: resolution diversity, where resizing or padding distorts forensic traces and reduces efficiency, and the modality gap, as images and videos often require separate models. To address these challenges, we propose RelayFormer, a unified framework that adapts to varying resolutions and modalities. RelayFormer partitions inputs into fixed-size sub-images and introduces Global-Local Relay (GLR) tokens, which propagate structured context through a global-local relay attention (GLRA) mechanism. This enables efficient exchange of global cues, such as semantic or temporal consistency, while preserving fine-grained manipulation artifacts. Unlike prior methods that rely on uniform resizing or sparse attention, RelayFormer naturally scales to arbitrary resolutions and video sequences without excessive overhead. Experiments across diverse benchmarks demonstrate that RelayFormer achieves state-of-the-art performance with notable efficiency, combining resolution adaptivity without interpolation or excessive padding, unified modeling for both images and videos, and a strong balance between accuracy and computational cost. Code is available at: https://github.com/WenOOI/RelayFormer.

  • 7 authors
·
Aug 12, 2025

AnchorAttention: Difference-Aware Sparse Attention with Stripe Granularity

Large Language Models (LLMs) with extended context lengths face significant computational challenges during the pre-filling phase, primarily due to the quadratic complexity of self-attention. Existing methods typically employ dynamic pattern matching and block-sparse low-level implementations. However, their reliance on local information for pattern identification fails to capture global contexts, and the coarse granularity of blocks leads to persistent internal sparsity, resulting in suboptimal accuracy and efficiency. To address these limitations, we propose AnchorAttention, a difference-aware, dynamic sparse attention mechanism that efficiently identifies critical attention regions at a finer stripe granularity while adapting to global contextual information, achieving superior speed and accuracy. AnchorAttention comprises three key components: (1) Pattern-based Anchor Computation, leveraging the commonalities present across all inputs to rapidly compute a set of near-maximum scores as the anchor; (2) Difference-aware Stripe Sparsity Identification, performing difference-aware comparisons with the anchor to quickly obtain discrete coordinates of significant regions in a stripe-like sparsity pattern; (3) Fine-grained Sparse Computation, replacing the traditional contiguous KV block loading approach with simultaneous discrete KV position loading to maximize sparsity rates while preserving full hardware computational potential. With its finer-grained sparsity strategy, AnchorAttention achieves higher sparsity rates at the same recall level, significantly reducing computation time. Compared to previous state-of-the-art methods, at a text length of 128k, it achieves a speedup of 1.44times while maintaining higher recall rates.

  • 6 authors
·
May 29, 2025

Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention

Long-context modeling is crucial for next-generation language models, yet the high computational cost of standard attention mechanisms poses significant computational challenges. Sparse attention offers a promising direction for improving efficiency while maintaining model capabilities. We present NSA, a Natively trainable Sparse Attention mechanism that integrates algorithmic innovations with hardware-aligned optimizations to achieve efficient long-context modeling. NSA employs a dynamic hierarchical sparse strategy, combining coarse-grained token compression with fine-grained token selection to preserve both global context awareness and local precision. Our approach advances sparse attention design with two key innovations: (1) We achieve substantial speedups through arithmetic intensity-balanced algorithm design, with implementation optimizations for modern hardware. (2) We enable end-to-end training, reducing pretraining computation without sacrificing model performance. As shown in Figure 1, experiments show the model pretrained with NSA maintains or exceeds Full Attention models across general benchmarks, long-context tasks, and instruction-based reasoning. Meanwhile, NSA achieves substantial speedups over Full Attention on 64k-length sequences across decoding, forward propagation, and backward propagation, validating its efficiency throughout the model lifecycle.

deepseek-ai DeepSeek
·
Feb 16, 2025 10

PAROAttention: Pattern-Aware ReOrdering for Efficient Sparse and Quantized Attention in Visual Generation Models

In visual generation, the quadratic complexity of attention mechanisms results in high memory and computational costs, especially for longer token sequences required in high-resolution image or multi-frame video generation. To address this, prior research has explored techniques such as sparsification and quantization. However, these techniques face significant challenges under low density and reduced bitwidths. Through systematic analysis, we identify that the core difficulty stems from the dispersed and irregular characteristics of visual attention patterns. Therefore, instead of introducing specialized sparsification and quantization design to accommodate such patterns, we propose an alternative strategy: *reorganizing* the attention pattern to alleviate the challenges. Inspired by the local aggregation nature of visual feature extraction, we design a novel **Pattern-Aware token ReOrdering (PARO)** technique, which unifies the diverse attention patterns into a hardware-friendly block-wise pattern. This unification substantially simplifies and enhances both sparsification and quantization. We evaluate the performance-efficiency trade-offs of various design choices and finalize a methodology tailored for the unified pattern. Our approach, **PAROAttention**, achieves video and image generation with lossless metrics, and nearly identical results from full-precision (FP) baselines, while operating at notably lower density (~20%-30%) and bitwidth (**INT8/INT4**), achieving a **1.9x** to **2.7x** end-to-end latency speedup.

  • 11 authors
·
Jun 19, 2025 2

Efficient Content-Based Sparse Attention with Routing Transformers

Self-attention has recently been adopted for a wide range of sequence modeling problems. Despite its effectiveness, self-attention suffers from quadratic compute and memory requirements with respect to sequence length. Successful approaches to reduce this complexity focused on attending to local sliding windows or a small set of locations independent of content. Our work proposes to learn dynamic sparse attention patterns that avoid allocating computation and memory to attend to content unrelated to the query of interest. This work builds upon two lines of research: it combines the modeling flexibility of prior work on content-based sparse attention with the efficiency gains from approaches based on local, temporal sparse attention. Our model, the Routing Transformer, endows self-attention with a sparse routing module based on online k-means while reducing the overall complexity of attention to Oleft(n^{1.5}dright) from Oleft(n^2dright) for sequence length n and hidden dimension d. We show that our model outperforms comparable sparse attention models on language modeling on Wikitext-103 (15.8 vs 18.3 perplexity) as well as on image generation on ImageNet-64 (3.43 vs 3.44 bits/dim) while using fewer self-attention layers. Additionally, we set a new state-of-the-art on the newly released PG-19 data-set, obtaining a test perplexity of 33.2 with a 22 layer Routing Transformer model trained on sequences of length 8192.

  • 4 authors
·
Mar 12, 2020 1

Combiner: Full Attention Transformer with Sparse Computation Cost

Transformers provide a class of expressive architectures that are extremely effective for sequence modeling. However, the key limitation of transformers is their quadratic memory and time complexity O(L^2) with respect to the sequence length in attention layers, which restricts application in extremely long sequences. Most existing approaches leverage sparsity or low-rank assumptions in the attention matrix to reduce cost, but sacrifice expressiveness. Instead, we propose Combiner, which provides full attention capability in each attention head while maintaining low computation and memory complexity. The key idea is to treat the self-attention mechanism as a conditional expectation over embeddings at each location, and approximate the conditional distribution with a structured factorization. Each location can attend to all other locations, either via direct attention, or through indirect attention to abstractions, which are again conditional expectations of embeddings from corresponding local regions. We show that most sparse attention patterns used in existing sparse transformers are able to inspire the design of such factorization for full attention, resulting in the same sub-quadratic cost (O(Llog(L)) or O(LL)). Combiner is a drop-in replacement for attention layers in existing transformers and can be easily implemented in common frameworks. An experimental evaluation on both autoregressive and bidirectional sequence tasks demonstrates the effectiveness of this approach, yielding state-of-the-art results on several image and text modeling tasks.

  • 7 authors
·
Jul 12, 2021

DLGSANet: Lightweight Dynamic Local and Global Self-Attention Networks for Image Super-Resolution

We propose an effective lightweight dynamic local and global self-attention network (DLGSANet) to solve image super-resolution. Our method explores the properties of Transformers while having low computational costs. Motivated by the network designs of Transformers, we develop a simple yet effective multi-head dynamic local self-attention (MHDLSA) module to extract local features efficiently. In addition, we note that existing Transformers usually explore all similarities of the tokens between the queries and keys for the feature aggregation. However, not all the tokens from the queries are relevant to those in keys, using all the similarities does not effectively facilitate the high-resolution image reconstruction. To overcome this problem, we develop a sparse global self-attention (SparseGSA) module to select the most useful similarity values so that the most useful global features can be better utilized for the high-resolution image reconstruction. We develop a hybrid dynamic-Transformer block(HDTB) that integrates the MHDLSA and SparseGSA for both local and global feature exploration. To ease the network training, we formulate the HDTBs into a residual hybrid dynamic-Transformer group (RHDTG). By embedding the RHDTGs into an end-to-end trainable network, we show that our proposed method has fewer network parameters and lower computational costs while achieving competitive performance against state-of-the-art ones in terms of accuracy. More information is available at https://neonleexiang.github.io/DLGSANet/

  • 4 authors
·
Jan 5, 2023

MoA: Mixture of Sparse Attention for Automatic Large Language Model Compression

Sparse attention can effectively mitigate the significant memory and throughput demands of Large Language Models (LLMs) in long contexts. Existing methods typically employ a uniform sparse attention mask, applying the same sparse pattern across different attention heads and input lengths. However, this uniform approach fails to capture the diverse attention patterns inherent in LLMs, ignoring their distinct accuracy-latency trade-offs. To address this challenge, we propose the Mixture of Attention (MoA), which automatically tailors distinct sparse attention configurations to different heads and layers. MoA constructs and navigates a search space of various attention patterns and their scaling rules relative to input sequence lengths. It profiles the model, evaluates potential configurations, and pinpoints the optimal sparse attention compression plan. MoA adapts to varying input sizes, revealing that some attention heads expand their focus to accommodate longer sequences, while other heads consistently concentrate on fixed-length local contexts. Experiments show that MoA increases the effective context length by 3.9times with the same average attention span, boosting retrieval accuracy by 1.5-7.1times over the uniform-attention baseline across Vicuna-7B, Vicuna-13B, and Llama3-8B models. Moreover, MoA narrows the capability gaps between sparse and dense models, reducing the maximum relative performance drop from 9%-36% to within 5% across two long-context understanding benchmarks. MoA achieves a 1.2-1.4times GPU memory reduction and boosts decode throughput by 5.5-6.7 times for 7B and 13B dense models on a single GPU, with minimal impact on performance.

  • 13 authors
·
Jun 21, 2024 4

Factorization Vision Transformer: Modeling Long Range Dependency with Local Window Cost

Transformers have astounding representational power but typically consume considerable computation which is quadratic with image resolution. The prevailing Swin transformer reduces computational costs through a local window strategy. However, this strategy inevitably causes two drawbacks: (1) the local window-based self-attention hinders global dependency modeling capability; (2) recent studies point out that local windows impair robustness. To overcome these challenges, we pursue a preferable trade-off between computational cost and performance. Accordingly, we propose a novel factorization self-attention mechanism (FaSA) that enjoys both the advantages of local window cost and long-range dependency modeling capability. By factorizing the conventional attention matrix into sparse sub-attention matrices, FaSA captures long-range dependencies while aggregating mixed-grained information at a computational cost equivalent to the local window-based self-attention. Leveraging FaSA, we present the factorization vision transformer (FaViT) with a hierarchical structure. FaViT achieves high performance and robustness, with linear computational complexity concerning input image spatial resolution. Extensive experiments have shown FaViT's advanced performance in classification and downstream tasks. Furthermore, it also exhibits strong model robustness to corrupted and biased data and hence demonstrates benefits in favor of practical applications. In comparison to the baseline model Swin-T, our FaViT-B2 significantly improves classification accuracy by 1% and robustness by 7%, while reducing model parameters by 14%. Our code will soon be publicly available at https://github.com/q2479036243/FaViT.

  • 5 authors
·
Dec 13, 2023

SCOUT: Toward Sub-Quadratic Attention via Segment Compression for Optimized Utility in Transformers

Transformers have demonstrated strong performance across a wide range of sequence modeling tasks, but their quadratic attention complexity limits scalability to long sequences. Linear models such as Mamba and sliding-window attention (SWA) address this by mixing tokens through recurrent or localized operations with fixed-size memory, achieving efficient inference. However, these methods risk degrading performance on long sequences due to their inability to retain detailed information from distant tokens. We propose SCOUT (Segment Compression for Optimized Utility in Transformers), a hybrid architecture that compresses tokens locally within fixed-size segments and applies attention only over these compressed representations. Each token embedding is first enriched via a linear local mixer, Mamba or SWA, that integrates recent context. Then, instead of attending to all previous tokens, each token sparsely attends to a small number of compressed checkpoint tokens that summarize the input history. This design retains much of the expressivity of full attention while substantially reducing the computational and memory cost. By attending to compressed history rather than all previous tokens, SCOUT incurs slightly higher memory than purely linear models, but its growth rate remains sub-quadratic and far more scalable than that of full Transformers. We analyze SCOUT's computational and memory efficiency and evaluate it empirically on long-context language modeling and reasoning tasks. SCOUT with both Mamba and SWA mixers outperforms strong long-sequence baselines under the same computational budget, matches full-attention Transformers on language modeling and common-sense reasoning tasks at 400M and 1.3B scales. Moreover, our SCOUT achieves higher end-to-end throughput than SOTA models, while delivering comparable results on long sequence benchmarks.

  • 6 authors
·
Aug 31, 2025

DSVT: Dynamic Sparse Voxel Transformer with Rotated Sets

Designing an efficient yet deployment-friendly 3D backbone to handle sparse point clouds is a fundamental problem in 3D perception. Compared with the customized sparse convolution, the attention mechanism in Transformers is more appropriate for flexibly modeling long-range relationships and is easier to be deployed in real-world applications. However, due to the sparse characteristics of point clouds, it is non-trivial to apply a standard transformer on sparse points. In this paper, we present Dynamic Sparse Voxel Transformer (DSVT), a single-stride window-based voxel Transformer backbone for outdoor 3D perception. In order to efficiently process sparse points in parallel, we propose Dynamic Sparse Window Attention, which partitions a series of local regions in each window according to its sparsity and then computes the features of all regions in a fully parallel manner. To allow the cross-set connection, we design a rotated set partitioning strategy that alternates between two partitioning configurations in consecutive self-attention layers. To support effective downsampling and better encode geometric information, we also propose an attention-style 3D pooling module on sparse points, which is powerful and deployment-friendly without utilizing any customized CUDA operations. Our model achieves state-of-the-art performance with a broad range of 3D perception tasks. More importantly, DSVT can be easily deployed by TensorRT with real-time inference speed (27Hz). Code will be available at https://github.com/Haiyang-W/DSVT.

  • 8 authors
·
Jan 15, 2023

SmallThinker: A Family of Efficient Large Language Models Natively Trained for Local Deployment

While frontier large language models (LLMs) continue to push capability boundaries, their deployment remains confined to GPU-powered cloud infrastructure. We challenge this paradigm with SmallThinker, a family of LLMs natively designed - not adapted - for the unique constraints of local devices: weak computational power, limited memory, and slow storage. Unlike traditional approaches that mainly compress existing models built for clouds, we architect SmallThinker from the ground up to thrive within these limitations. Our innovation lies in a deployment-aware architecture that transforms constraints into design principles. First, We introduce a two-level sparse structure combining fine-grained Mixture-of-Experts (MoE) with sparse feed-forward networks, drastically reducing computational demands without sacrificing model capacity. Second, to conquer the I/O bottleneck of slow storage, we design a pre-attention router that enables our co-designed inference engine to prefetch expert parameters from storage while computing attention, effectively hiding storage latency that would otherwise cripple on-device inference. Third, for memory efficiency, we utilize NoPE-RoPE hybrid sparse attention mechanism to slash KV cache requirements. We release SmallThinker-4B-A0.6B and SmallThinker-21B-A3B, which achieve state-of-the-art performance scores and even outperform larger LLMs. Remarkably, our co-designed system mostly eliminates the need for expensive GPU hardware: with Q4_0 quantization, both models exceed 20 tokens/s on ordinary consumer CPUs, while consuming only 1GB and 8GB of memory respectively. SmallThinker is publicly available at hf.co/PowerInfer/SmallThinker-4BA0.6B-Instruct and hf.co/PowerInfer/SmallThinker-21BA3B-Instruct.

  • 14 authors
·
Jul 28, 2025 2

CoBEVT: Cooperative Bird's Eye View Semantic Segmentation with Sparse Transformers

Bird's eye view (BEV) semantic segmentation plays a crucial role in spatial sensing for autonomous driving. Although recent literature has made significant progress on BEV map understanding, they are all based on single-agent camera-based systems. These solutions sometimes have difficulty handling occlusions or detecting distant objects in complex traffic scenes. Vehicle-to-Vehicle (V2V) communication technologies have enabled autonomous vehicles to share sensing information, dramatically improving the perception performance and range compared to single-agent systems. In this paper, we propose CoBEVT, the first generic multi-agent multi-camera perception framework that can cooperatively generate BEV map predictions. To efficiently fuse camera features from multi-view and multi-agent data in an underlying Transformer architecture, we design a fused axial attention module (FAX), which captures sparsely local and global spatial interactions across views and agents. The extensive experiments on the V2V perception dataset, OPV2V, demonstrate that CoBEVT achieves state-of-the-art performance for cooperative BEV semantic segmentation. Moreover, CoBEVT is shown to be generalizable to other tasks, including 1) BEV segmentation with single-agent multi-camera and 2) 3D object detection with multi-agent LiDAR systems, achieving state-of-the-art performance with real-time inference speed. The code is available at https://github.com/DerrickXuNu/CoBEVT.

  • 6 authors
·
Jul 5, 2022

QualityFM: a Multimodal Physiological Signal Foundation Model with Self-Distillation for Signal Quality Challenges in Critically Ill Patients

Photoplethysmogram (PPG) and electrocardiogram (ECG) are commonly recorded in intesive care unit (ICU) and operating room (OR). However, the high incidence of poor, incomplete, and inconsistent signal quality, can lead to false alarms or diagnostic inaccuracies. The methods explored so far suffer from limited generalizability, reliance on extensive labeled data, and poor cross-task transferability. To overcome these challenges, we introduce QualityFM, a novel multimodal foundation model for these physiological signals, designed to acquire a general-purpose understanding of signal quality. Our model is pre-trained on an large-scale dataset comprising over 21 million 30-second waveforms and 179,757 hours of data. Our approach involves a dual-track architecture that processes paired physiological signals of differing quality, leveraging a self-distillation strategy where an encoder for high-quality signals is used to guide the training of an encoder for low-quality signals. To efficiently handle long sequential signals and capture essential local quasi-periodic patterns, we integrate a windowed sparse attention mechanism within our Transformer-based model. Furthermore, a composite loss function, which combines direct distillation loss on encoder outputs with indirect reconstruction loss based on power and phase spectra, ensures the preservation of frequency-domain characteristics of the signals. We pre-train three models with varying parameter counts (9.6 M to 319 M) and demonstrate their efficacy and practical value through transfer learning on three distinct clinical tasks: false alarm of ventricular tachycardia detection, the identification of atrial fibrillation and the estimation of arterial blood pressure (ABP) from PPG and ECG signals.

  • 3 authors
·
Sep 8, 2025

Generalized Neighborhood Attention: Multi-dimensional Sparse Attention at the Speed of Light

Many sparse attention mechanisms such as Neighborhood Attention have typically failed to consistently deliver speedup over the self attention baseline. This is largely due to the level of complexity in attention infrastructure, and the rapid evolution of AI hardware architecture. At the same time, many state-of-the-art foundational models, particularly in computer vision, are heavily bound by attention, and need reliable sparsity to escape the O(n^2) complexity. In this paper, we study a class of promising sparse attention mechanisms that focus on locality, and aim to develop a better analytical model of their performance improvements. We first introduce Generalized Neighborhood Attention (GNA), which can describe sliding window, strided sliding window, and blocked attention. We then consider possible design choices in implementing these approaches, and create a simulator that can provide much more realistic speedup upper bounds for any given setting. Finally, we implement GNA on top of a state-of-the-art fused multi-headed attention (FMHA) kernel designed for the NVIDIA Blackwell architecture in CUTLASS. Our implementation can fully realize the maximum speedup theoretically possible in many perfectly block-sparse cases, and achieves an effective utilization of 1.3 petaFLOPs/second in FP16. In addition, we plug various GNA configurations into off-the-shelf generative models, such as Cosmos-7B, HunyuanVideo, and FLUX, and show that it can deliver 28% to 46% end-to-end speedup on B200 without any fine-tuning. We will open source our simulator and Blackwell kernels directly through the NATTEN project.

  • 16 authors
·
Apr 23, 2025

Long-Context Modeling with Dynamic Hierarchical Sparse Attention for On-Device LLMs

The quadratic cost of attention hinders the scalability of long-context LLMs, especially in resource-constrained settings. Existing static sparse methods such as sliding windows or global tokens utilizes the sparsity of attention to reduce the cost of attention, but poorly adapts to the content-dependent variations in attention due to their staticity. While previous work has proposed several dynamic approaches to improve flexibility, they still depend on predefined templates or heuristic mechanisms. Such strategies reduce generality and prune tokens that remain contextually important, limiting their accuracy across diverse tasks. To tackle these bottlenecks of existing methods for long-context modeling, we introduce Dynamic Hierarchical Sparse Attention (DHSA), a data-driven framework that dynamically predicts attention sparsity online without retraining. Our proposed DHSA adaptively segments sequences into variable-length chunks, then computes chunk representations by aggregating the token embeddings within each chunk. To avoid the bias introduced by varying chunk lengths, we apply length-normalized aggregation that scales the averaged embeddings by the square root of the chunk size. Finally, DHSA upsamples the chunk-level similarity scores to token level similarities to calculate importance scores that determine which token-level interactions should be preserved. Our experiments on Gemma2 with Needle-in-a-Haystack Test and LongBench show that DHSA matches dense attention in accuracy, while reducing prefill latency by 20-60% and peak memory usage by 35%. Compared to other representative baselines such as block sparse attention, DHSA achieves consistently higher accuracy (6-18% relative gains) with comparable or lower cost, offering an efficient and adaptable solution for long-context on-device LLMs.

  • 4 authors
·
Oct 28, 2025

Local Linear Attention: An Optimal Interpolation of Linear and Softmax Attention For Test-Time Regression

Transformer architectures have achieved remarkable success in various domains. While efficient alternatives to Softmax Attention have been widely studied, the search for more expressive mechanisms grounded in theoretical insight-even at greater computational cost-has been relatively underexplored. In this work, we bridge this gap by proposing Local Linear Attention (LLA), a novel attention mechanism derived from nonparametric statistics through the lens of test-time regression. First, we show that LLA offers theoretical advantages over Linear and Softmax Attention for associative memory via a bias-variance trade-off analysis. Next, we address its computational challenges and propose two memory-efficient primitives to tackle the Theta(n^2 d) and Theta(n d^2) complexity. We then introduce FlashLLA, a hardware-efficient, blockwise algorithm that enables scalable and parallel computation on modern accelerators. In addition, we implement and profile a customized inference kernel that significantly reduces memory overheads. Finally, we empirically validate the advantages and limitations of LLA on test-time regression, in-context regression, associative recall and state tracking tasks. Experiment results demonstrate that LLA effectively adapts to non-stationarity, outperforming strong baselines in test-time training and in-context learning, and exhibiting promising evidence for its scalability and applicability in large-scale models. Code is available at https://github.com/Yifei-Zuo/Flash-LLA.

  • 6 authors
·
Oct 1, 2025

The Sparse Frontier: Sparse Attention Trade-offs in Transformer LLMs

Sparse attention offers a promising strategy to extend long-context capabilities in Transformer LLMs, yet its viability, its efficiency-accuracy trade-offs, and systematic scaling studies remain unexplored. To address this gap, we perform a careful comparison of training-free sparse attention methods at varying model scales, sequence lengths, and sparsity levels on a diverse collection of long-sequence tasks-including novel ones that rely on natural language while remaining controllable and easy to evaluate. Based on our experiments, we report a series of key findings: 1) an isoFLOPS analysis reveals that for very long sequences, larger and highly sparse models are preferable to smaller and dense ones. 2) The level of sparsity attainable while statistically guaranteeing accuracy preservation is higher during decoding than prefilling, and correlates with model size in the former. 3) There is no clear strategy that performs best across tasks and phases, with different units of sparsification or budget adaptivity needed for different scenarios. Even moderate sparsity levels often result in significant performance degradation on at least one task, highlighting that sparse attention is not a universal solution. 4) We introduce and validate novel scaling laws specifically tailored for sparse attention, providing evidence that our findings are likely to hold true beyond our range of experiments. Through these insights, we demonstrate that sparse attention is a key tool to enhance the capabilities of Transformer LLMs for processing longer sequences, but requires careful evaluation of trade-offs for performance-sensitive applications.

  • 6 authors
·
Apr 24, 2025 3

Vision Remember: Alleviating Visual Forgetting in Efficient MLLM with Vision Feature Resample

In this work, we study the Efficient Multimodal Large Language Model. Redundant vision tokens consume a significant amount of computational memory and resources. Therefore, many previous works compress them in the Vision Projector to reduce the number of vision tokens. However, simply compressing in the Vision Projector can lead to the loss of visual information, especially for tasks that rely on fine-grained spatial relationships, such as OCR and Chart \& Table Understanding. To address this problem, we propose Vision Remember, which is inserted between the LLM decoder layers to allow vision tokens to re-memorize vision features. Specifically, we retain multi-level vision features and resample them with the vision tokens that have interacted with the text token. During the resampling process, each vision token only attends to a local region in vision features, which is referred to as saliency-enhancing local attention. Saliency-enhancing local attention not only improves computational efficiency but also captures more fine-grained contextual information and spatial relationships within the region. Comprehensive experiments on multiple visual understanding benchmarks validate the effectiveness of our method when combined with various Efficient Vision Projectors, showing performance gains without sacrificing efficiency. Based on Vision Remember, LLaVA-VR with only 2B parameters is also superior to previous representative MLLMs such as Tokenpacker-HD-7B and DeepSeek-VL-7B.

  • 7 authors
·
Jun 4, 2025

SeerAttention: Learning Intrinsic Sparse Attention in Your LLMs

Attention is the cornerstone of modern Large Language Models (LLMs). Yet its quadratic complexity limits the efficiency and scalability of LLMs, especially for those with a long-context window. A promising approach addressing this limitation is to leverage the sparsity in attention. However, existing sparsity-based solutions predominantly rely on predefined patterns or heuristics to approximate sparsity. This practice falls short to fully capture the dynamic nature of attention sparsity in language-based tasks. This paper argues that attention sparsity should be learned rather than predefined. To this end, we design SeerAttention, a new Attention mechanism that augments the conventional attention with a learnable gate that adaptively selects significant blocks in an attention map and deems the rest blocks sparse. Such block-level sparsity effectively balances accuracy and speedup. To enable efficient learning of the gating network, we develop a customized FlashAttention implementation that extracts the block-level ground truth of attention map with minimum overhead. SeerAttention not only applies to post-training, but also excels in long-context fine-tuning. Our results show that at post-training stages, SeerAttention significantly outperforms state-of-the-art static or heuristic-based sparse attention methods, while also being more versatile and flexible to adapt to varying context lengths and sparsity ratios. When applied to long-context fine-tuning with YaRN, SeerAttention can achieve a remarkable 90% sparsity ratio at a 32k context length with minimal perplexity loss, offering a 5.67x speedup over FlashAttention-2.

  • 8 authors
·
Oct 17, 2024 2

PowerAttention: Exponentially Scaling of Receptive Fields for Effective Sparse Attention

Large Language Models (LLMs) face efficiency bottlenecks due to the quadratic complexity of the attention mechanism when processing long contexts. Sparse attention methods offer a promising solution, but existing approaches often suffer from incomplete effective context and/or require complex implementation of pipeline. We present a comprehensive analysis of sparse attention for autoregressive LLMs from the respective of receptive field, recognize the suboptimal nature of existing methods for expanding the receptive field, and introduce PowerAttention, a novel sparse attention design that facilitates effective and complete context extension through the theoretical analysis. PowerAttention achieves exponential receptive field growth in d-layer LLMs, allowing each output token to attend to 2^d tokens, ensuring completeness and continuity of the receptive field. Experiments demonstrate that PowerAttention outperforms existing static sparse attention methods by 5sim 40%, especially on tasks demanding long-range dependencies like Passkey Retrieval and RULER, while maintaining a comparable time complexity to sliding window attention. Efficiency evaluations further highlight PowerAttention's superior speedup in both prefilling and decoding phases compared with dynamic sparse attentions and full attention (3.0times faster on 128K context), making it a highly effective and user-friendly solution for processing long sequences in LLMs.

  • 11 authors
·
Mar 5, 2025

SparseD: Sparse Attention for Diffusion Language Models

While diffusion language models (DLMs) offer a promising alternative to autoregressive models (ARs), existing open-source DLMs suffer from high inference latency. This bottleneck is mainly due to the attention's quadratic complexity with respect to context length in computing all query-key pairs. Intuitively, to reduce this complexity, a natural strategy is to restrict attention to sparse patterns that retain only the most relevant connections. Such approaches are well-established in ARs, where attention follows fixed and clearly defined sparse patterns. However, in DLMs, we observe distinct sparsity behaviors: (1) attention patterns vary across heads, (2) attention patterns in each head remain highly similar across denoising steps, and (3) early denoising steps are critical for generation. These findings render sparse attention methods designed for ARs largely incompatible with DLMs, as they fail to capture head-specific structures and risk degrading generation when applied in early denoising steps. To address these challenges, we propose SparseD, a novel sparse attention method for DLMs. Leveraging the observations, SparseD only requires pre-computing head-specific sparse patterns one time, and reuses them across all steps. This prevents recomputing sparse patterns at each denoising step. Meanwhile, SparseD uses full attention in the early steps, then switches to sparse attention later to maintain generation quality. Together, these establish SparseD as a practical and efficient solution for deploying DLMs in long-context applications. Experimental results demonstrate that SparseD achieves lossless acceleration, delivering up to 1.50times speedup over FlashAttention at a 64k context length with 1,024 denoising steps.

  • 5 authors
·
Sep 28, 2025 2

ELA: Efficient Local Attention for Deep Convolutional Neural Networks

The attention mechanism has gained significant recognition in the field of computer vision due to its ability to effectively enhance the performance of deep neural networks. However, existing methods often struggle to effectively utilize spatial information or, if they do, they come at the cost of reducing channel dimensions or increasing the complexity of neural networks. In order to address these limitations, this paper introduces an Efficient Local Attention (ELA) method that achieves substantial performance improvements with a simple structure. By analyzing the limitations of the Coordinate Attention method, we identify the lack of generalization ability in Batch Normalization, the adverse effects of dimension reduction on channel attention, and the complexity of attention generation process. To overcome these challenges, we propose the incorporation of 1D convolution and Group Normalization feature enhancement techniques. This approach enables accurate localization of regions of interest by efficiently encoding two 1D positional feature maps without the need for dimension reduction, while allowing for a lightweight implementation. We carefully design three hyperparameters in ELA, resulting in four different versions: ELA-T, ELA-B, ELA-S, and ELA-L, to cater to the specific requirements of different visual tasks such as image classification, object detection and sementic segmentation. ELA can be seamlessly integrated into deep CNN networks such as ResNet, MobileNet, and DeepLab. Extensive evaluations on the ImageNet, MSCOCO, and Pascal VOC datasets demonstrate the superiority of the proposed ELA module over current state-of-the-art methods in all three aforementioned visual tasks.

  • 2 authors
·
Mar 2, 2024

Efficient LLM Training and Serving with Heterogeneous Context Sharding among Attention Heads

Existing LLM training and inference frameworks struggle in boosting efficiency with sparsity while maintaining the integrity of context and model architecture. Inspired by the sharding concept in database and the fact that attention parallelizes over heads on accelerators, we propose Sparsely-Sharded (S2) Attention, an attention algorithm that allocates heterogeneous context partitions for different attention heads to divide and conquer. S2-Attention enforces each attention head to only attend to a partition of contexts following a strided sparsity pattern, while the full context is preserved as the union of all the shards. As attention heads are processed in separate thread blocks, the context reduction for each head can thus produce end-to-end speed-up and memory reduction. At inference, LLMs trained with S2-Attention can then take the KV cache reduction as free meals with guaranteed model quality preserve. In experiments, we show S2-Attentioncan provide as much as (1) 25.3X wall-clock attention speed-up over FlashAttention-2, resulting in 6X reduction in end-to-end training time and 10X inference latency, (2) on-par model training quality compared to default attention, (3)perfect needle retrieval accuracy over 32K context window. On top of the algorithm, we build DKernel, an LLM training and inference kernel library that allows users to customize sparsity patterns for their own models. We open-sourced DKerneland make it compatible with Megatron, Pytorch, and vLLM.

  • 7 authors
·
Jul 24, 2024 2

AGLA: Mitigating Object Hallucinations in Large Vision-Language Models with Assembly of Global and Local Attention

Despite their great success across various multimodal tasks, Large Vision-Language Models (LVLMs) are facing a prevalent problem with object hallucinations, where the generated textual responses are inconsistent with ground-truth objects in the given image. This paper investigates various LVLMs and pinpoints attention deficiency toward discriminative local image features as one root cause of object hallucinations. Specifically, LVLMs predominantly attend to prompt-independent global image features, while failing to capture prompt-relevant local features, consequently undermining the visual grounding capacity of LVLMs and leading to hallucinations. To this end, we propose Assembly of Global and Local Attention (AGLA), a training-free and plug-and-play approach that mitigates object hallucinations by exploring an ensemble of global features for response generation and local features for visual discrimination simultaneously. Our approach exhibits an image-prompt matching scheme that captures prompt-relevant local features from images, leading to an augmented view of the input image where prompt-relevant content is reserved while irrelevant distractions are masked. With the augmented view, a calibrated decoding distribution can be derived by integrating generative global features from the original image and discriminative local features from the augmented image. Extensive experiments show that AGLA consistently mitigates object hallucinations and enhances general perception capability for LVLMs across various discriminative and generative benchmarks. Our code will be released at https://github.com/Lackel/AGLA.

  • 9 authors
·
Jun 18, 2024

Bridging the Divide: Reconsidering Softmax and Linear Attention

Widely adopted in modern Vision Transformer designs, Softmax attention can effectively capture long-range visual information; however, it incurs excessive computational cost when dealing with high-resolution inputs. In contrast, linear attention naturally enjoys linear complexity and has great potential to scale up to higher-resolution images. Nonetheless, the unsatisfactory performance of linear attention greatly limits its practical application in various scenarios. In this paper, we take a step forward to close the gap between the linear and Softmax attention with novel theoretical analyses, which demystify the core factors behind the performance deviations. Specifically, we present two key perspectives to understand and alleviate the limitations of linear attention: the injective property and the local modeling ability. Firstly, we prove that linear attention is not injective, which is prone to assign identical attention weights to different query vectors, thus adding to severe semantic confusion since different queries correspond to the same outputs. Secondly, we confirm that effective local modeling is essential for the success of Softmax attention, in which linear attention falls short. The aforementioned two fundamental differences significantly contribute to the disparities between these two attention paradigms, which is demonstrated by our substantial empirical validation in the paper. In addition, more experiment results indicate that linear attention, as long as endowed with these two properties, can outperform Softmax attention across various tasks while maintaining lower computation complexity. Code is available at https://github.com/LeapLabTHU/InLine.

  • 9 authors
·
Dec 9, 2024

BiFormer: Vision Transformer with Bi-Level Routing Attention

As the core building block of vision transformers, attention is a powerful tool to capture long-range dependency. However, such power comes at a cost: it incurs a huge computation burden and heavy memory footprint as pairwise token interaction across all spatial locations is computed. A series of works attempt to alleviate this problem by introducing handcrafted and content-agnostic sparsity into attention, such as restricting the attention operation to be inside local windows, axial stripes, or dilated windows. In contrast to these approaches, we propose a novel dynamic sparse attention via bi-level routing to enable a more flexible allocation of computations with content awareness. Specifically, for a query, irrelevant key-value pairs are first filtered out at a coarse region level, and then fine-grained token-to-token attention is applied in the union of remaining candidate regions (\ie, routed regions). We provide a simple yet effective implementation of the proposed bi-level routing attention, which utilizes the sparsity to save both computation and memory while involving only GPU-friendly dense matrix multiplications. Built with the proposed bi-level routing attention, a new general vision transformer, named BiFormer, is then presented. As BiFormer attends to a small subset of relevant tokens in a query adaptive manner without distraction from other irrelevant ones, it enjoys both good performance and high computational efficiency, especially in dense prediction tasks. Empirical results across several computer vision tasks such as image classification, object detection, and semantic segmentation verify the effectiveness of our design. Code is available at https://github.com/rayleizhu/BiFormer.

  • 5 authors
·
Mar 15, 2023

HiP Attention: Sparse Sub-Quadratic Attention with Hierarchical Attention Pruning

In modern large language models (LLMs), increasing sequence lengths is a crucial challenge for enhancing their comprehension and coherence in handling complex tasks such as multi-modal question answering. However, handling long context sequences with LLMs is prohibitively costly due to the conventional attention mechanism's quadratic time and space complexity, and the context window size is limited by the GPU memory. Although recent works have proposed linear and sparse attention mechanisms to address this issue, their real-world applicability is often limited by the need to re-train pre-trained models. In response, we propose a novel approach, Hierarchically Pruned Attention (HiP), which simultaneously reduces the training and inference time complexity from O(T^2) to O(T log T) and the space complexity from O(T^2) to O(T). To this end, we devise a dynamic sparse attention mechanism that generates an attention mask through a novel tree-search-like algorithm for a given query on the fly. HiP is training-free as it only utilizes the pre-trained attention scores to spot the positions of the top-k most significant elements for each query. Moreover, it ensures that no token is overlooked, unlike the sliding window-based sub-quadratic attention methods, such as StreamingLLM. Extensive experiments on diverse real-world benchmarks demonstrate that HiP significantly reduces prompt (i.e., prefill) and decoding latency and memory usage while maintaining high generation performance with little or no degradation. As HiP allows pretrained LLMs to scale to millions of tokens on commodity GPUs with no additional engineering due to its easy plug-and-play deployment, we believe that our work will have a large practical impact, opening up the possibility to many long-context LLM applications previously infeasible.

  • 7 authors
·
Jun 14, 2024

Trainable Dynamic Mask Sparse Attention

In large language models, the demand for modeling long contexts is constantly increasing, but the quadratic complexity of the standard self-attention mechanism often becomes a bottleneck. Although existing sparse attention mechanisms have improved efficiency, they may still encounter issues such as static patterns or information loss. We introduce a trainable dynamic mask sparse attention mechanism, Dynamic Mask Attention, which effectively utilizes content-aware and position-aware sparsity. DMA achieves this through two key innovations: First, it dynamically generates content-aware sparse masks from value representations, enabling the model to identify and focus on critical information adaptively. Second, it implements position-aware sparse attention computation that effectively skips unnecessary calculation regions. This dual-sparsity design allows the model to significantly reduce the computational complexity of important information while retaining complete information, achieving an excellent balance between information fidelity and computational efficiency. We have verified the performance of DMA through comprehensive experiments. Comparative studies show that DMA outperforms multi-head attention, sliding window attention, multi-head latent attention, and native sparse attention in terms of perplexity under Chinchilla Scaling Law settings. Moreover, in challenging multi-query associative recall tasks, DMA also demonstrates superior performance and efficiency compared to these methods. Crucially, in the evaluation of a 1.7B parameter model, DMA significantly outperforms multi-head attention in both standard benchmark performance and the challenging needle-in-a-haystack task. These experimental results highlight its capability to balance model efficiency and long-context modeling ability effectively.

  • 7 authors
·
Aug 4, 2025 2

Faster Neighborhood Attention: Reducing the O(n^2) Cost of Self Attention at the Threadblock Level

Neighborhood attention reduces the cost of self attention by restricting each token's attention span to its nearest neighbors. This restriction, parameterized by a window size and dilation factor, draws a spectrum of possible attention patterns between linear projection and self attention. Neighborhood attention, and more generally sliding window attention patterns, have long been bounded by infrastructure, particularly in higher-rank spaces (2-D and 3-D), calling for the development of custom kernels, which have been limited in either functionality, or performance, if not both. In this work, we first show that neighborhood attention can be represented as a batched GEMM problem, similar to standard attention, and implement it for 1-D and 2-D neighborhood attention. These kernels on average provide 895% and 272% improvement in full precision latency compared to existing naive kernels for 1-D and 2-D neighborhood attention respectively. We find certain inherent inefficiencies in all unfused neighborhood attention kernels that bound their performance and lower-precision scalability. We also developed fused neighborhood attention; an adaptation of fused dot-product attention kernels that allow fine-grained control over attention across different spatial axes. Known for reducing the quadratic time complexity of self attention to a linear complexity, neighborhood attention can now enjoy a reduced and constant memory footprint, and record-breaking half precision latency. We observe that our fused kernels successfully circumvent some of the unavoidable inefficiencies in unfused implementations. While our unfused GEMM-based kernels only improve half precision performance compared to naive kernels by an average of 496% and 113% in 1-D and 2-D problems respectively, our fused kernels improve naive kernels by an average of 1607% and 581% in 1-D and 2-D problems respectively.

  • 3 authors
·
Mar 7, 2024

Token Sparse Attention: Efficient Long-Context Inference with Interleaved Token Selection

The quadratic complexity of attention remains the central bottleneck in long-context inference for large language models. Prior acceleration methods either sparsify the attention map with structured patterns or permanently evict tokens at specific layers, which can retain irrelevant tokens or rely on irreversible early decisions despite the layer-/head-wise dynamics of token importance. In this paper, we propose Token Sparse Attention, a lightweight and dynamic token-level sparsification mechanism that compresses per-head Q, K, V to a reduced token set during attention and then decompresses the output back to the original sequence, enabling token information to be reconsidered in subsequent layers. Furthermore, Token Sparse Attention exposes a new design point at the intersection of token selection and sparse attention. Our approach is fully compatible with dense attention implementations, including Flash Attention, and can be seamlessly composed with existing sparse attention kernels. Experimental results show that Token Sparse Attention consistently improves accuracy-latency trade-off, achieving up to times3.23 attention speedup at 128K context with less than 1% accuracy degradation. These results demonstrate that dynamic and interleaved token-level sparsification is a complementary and effective strategy for scalable long-context inference.

Rectified SpaAttn: Revisiting Attention Sparsity for Efficient Video Generation

Diffusion Transformers dominate video generation, but the quadratic complexity of attention computation introduces substantial latency. Attention sparsity reduces computational costs by focusing on critical tokens while ignoring non-critical tokens. However, existing methods suffer from severe performance degradation. In this paper, we revisit attention sparsity and reveal that existing methods induce systematic biases in attention allocation: (1) excessive focus on critical tokens amplifies their attention weights; (2) complete neglect of non-critical tokens causes the loss of relevant attention weights. To address these issues, we propose Rectified SpaAttn, which rectifies attention allocation with implicit full attention reference, thereby enhancing the alignment between sparse and full attention maps. Specifically: (1) for critical tokens, we show that their bias is proportional to the sparse attention weights, with the ratio governed by the amplified weights. Accordingly, we propose Isolated-Pooling Attention Reallocation, which calculates accurate rectification factors by reallocating multimodal pooled weights. (2) for non-critical tokens, recovering attention weights from the pooled query-key yields attention gains but also introduces pooling errors. Therefore, we propose Gain-Aware Pooling Rectification, which ensures that the rectified gain consistently surpasses the induced error. Moreover, we customize and integrate the Rectified SpaAttn kernel using Triton, achieving up to 3.33 and 2.08 times speedups on HunyuanVideo and Wan 2.1, respectively, while maintaining high generation quality. We release Rectified SpaAttn as open-source at https://github.com/BienLuky/Rectified-SpaAttn .

  • 5 authors
·
Nov 24, 2025

NOSA: Native and Offloadable Sparse Attention

Trainable sparse attention has emerged as a promising solution to address the decoding efficiency bottleneck of LLMs in long-context processing, significantly saving memory accesses while minimally impacting task performance. However, existing sparse attention methods leave a crucial limitation unresolved: the size of the key-value (KV) cache remains unreduced, which constrains on-GPU batch sizes and throttles decoding throughput, especially in large-scale batched inference. In this paper, we show that trainable sparse attention naturally exhibits strong locality in token selection across adjacent decoding steps, thereby enabling KV cache offloading without altering the underlying attention computation. However, the inherent locality remains insufficient to achieve efficient offloading, as the transfer of selected KV pairs between the CPU and GPU continues to dominate the overall decoding cost. Building on this insight, we present NOSA, a trainable sparse attention framework designed to natively support KV cache offloading. NOSA introduces explicit locality constraints by decomposing token selection into query-aware and query-agnostic components, thereby reducing KV transfers while preserving the same attention computation as used during training. We pretrain a 1B-parameter model with NOSA and conduct extensive benchmarks, showing that it preserves near-lossless performance while achieving up to a 2.3x improvement in decoding throughput compared with the vanilla trainable sparse attention baseline (InfLLM-V2).

  • 4 authors
·
Oct 15, 2025 2

LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba

Recent Transformer-based diffusion models have shown remarkable performance, largely attributed to the ability of the self-attention mechanism to accurately capture both global and local contexts by computing all-pair interactions among input tokens. However, their quadratic complexity poses significant computational challenges for long-sequence inputs. Conversely, a recent state space model called Mamba offers linear complexity by compressing a filtered global context into a hidden state. Despite its efficiency, compression inevitably leads to information loss of fine-grained local dependencies among tokens, which are crucial for effective visual generative modeling. Motivated by these observations, we introduce Local Attentional Mamba (LaMamba) blocks that combine the strengths of self-attention and Mamba, capturing both global contexts and local details with linear complexity. Leveraging the efficient U-Net architecture, our model exhibits exceptional scalability and surpasses the performance of DiT across various model scales on ImageNet at 256x256 resolution, all while utilizing substantially fewer GFLOPs and a comparable number of parameters. Compared to state-of-the-art diffusion models on ImageNet 256x256 and 512x512, our largest model presents notable advantages, such as a reduction of up to 62\% GFLOPs compared to DiT-XL/2, while achieving superior performance with comparable or fewer parameters.

  • 3 authors
·
Aug 5, 2024

Focus on Local: Finding Reliable Discriminative Regions for Visual Place Recognition

Visual Place Recognition (VPR) is aimed at predicting the location of a query image by referencing a database of geotagged images. For VPR task, often fewer discriminative local regions in an image produce important effects while mundane background regions do not contribute or even cause perceptual aliasing because of easy overlap. However, existing methods lack precisely modeling and full exploitation of these discriminative regions. In this paper, we propose the Focus on Local (FoL) approach to stimulate the performance of image retrieval and re-ranking in VPR simultaneously by mining and exploiting reliable discriminative local regions in images and introducing pseudo-correlation supervision. First, we design two losses, Extraction-Aggregation Spatial Alignment Loss (SAL) and Foreground-Background Contrast Enhancement Loss (CEL), to explicitly model reliable discriminative local regions and use them to guide the generation of global representations and efficient re-ranking. Second, we introduce a weakly-supervised local feature training strategy based on pseudo-correspondences obtained from aggregating global features to alleviate the lack of local correspondences ground truth for the VPR task. Third, we suggest an efficient re-ranking pipeline that is efficiently and precisely based on discriminative region guidance. Finally, experimental results show that our FoL achieves the state-of-the-art on multiple VPR benchmarks in both image retrieval and re-ranking stages and also significantly outperforms existing two-stage VPR methods in terms of computational efficiency. Code and models are available at https://github.com/chenshunpeng/FoL

  • 14 authors
·
Apr 14, 2025

MMInference: Accelerating Pre-filling for Long-Context VLMs via Modality-Aware Permutation Sparse Attention

The integration of long-context capabilities with visual understanding unlocks unprecedented potential for Vision Language Models (VLMs). However, the quadratic attention complexity during the pre-filling phase remains a significant obstacle to real-world deployment. To overcome this limitation, we introduce MMInference (Multimodality Million tokens Inference), a dynamic sparse attention method that accelerates the prefilling stage for long-context multi-modal inputs. First, our analysis reveals that the temporal and spatial locality of video input leads to a unique sparse pattern, the Grid pattern. Simultaneously, VLMs exhibit markedly different sparse distributions across different modalities. We introduce a permutation-based method to leverage the unique Grid pattern and handle modality boundary issues. By offline search the optimal sparse patterns for each head, MMInference constructs the sparse distribution dynamically based on the input. We also provide optimized GPU kernels for efficient sparse computations. Notably, MMInference integrates seamlessly into existing VLM pipelines without any model modifications or fine-tuning. Experiments on multi-modal benchmarks-including Video QA, Captioning, VisionNIAH, and Mixed-Modality NIAH-with state-of-the-art long-context VLMs (LongVila, LlavaVideo, VideoChat-Flash, Qwen2.5-VL) show that MMInference accelerates the pre-filling stage by up to 8.3x at 1M tokens while maintaining accuracy. Our code is available at https://aka.ms/MMInference.

  • 11 authors
·
Apr 22, 2025 2

Sparsifiner: Learning Sparse Instance-Dependent Attention for Efficient Vision Transformers

Vision Transformers (ViT) have shown their competitive advantages performance-wise compared to convolutional neural networks (CNNs) though they often come with high computational costs. To this end, previous methods explore different attention patterns by limiting a fixed number of spatially nearby tokens to accelerate the ViT's multi-head self-attention (MHSA) operations. However, such structured attention patterns limit the token-to-token connections to their spatial relevance, which disregards learned semantic connections from a full attention mask. In this work, we propose a novel approach to learn instance-dependent attention patterns, by devising a lightweight connectivity predictor module to estimate the connectivity score of each pair of tokens. Intuitively, two tokens have high connectivity scores if the features are considered relevant either spatially or semantically. As each token only attends to a small number of other tokens, the binarized connectivity masks are often very sparse by nature and therefore provide the opportunity to accelerate the network via sparse computations. Equipped with the learned unstructured attention pattern, sparse attention ViT (Sparsifiner) produces a superior Pareto-optimal trade-off between FLOPs and top-1 accuracy on ImageNet compared to token sparsity. Our method reduces 48% to 69% FLOPs of MHSA while the accuracy drop is within 0.4%. We also show that combining attention and token sparsity reduces ViT FLOPs by over 60%.

  • 6 authors
·
Mar 23, 2023

SSA: Sparse Sparse Attention by Aligning Full and Sparse Attention Outputs in Feature Space

The quadratic complexity of full attention limits efficient long-context processing in large language models (LLMs). Sparse attention mitigates this cost by restricting each query to attend to a subset of previous tokens; however, training-free approaches often lead to severe performance degradation. Native sparse-attention methods (e.g., NSA, MoBA) alleviate this issue, yet exhibit a critical paradox: they produce lower attention sparsity than full-attention models, despite aiming to approximate full attention, which may constrain their effectiveness. We attribute this paradox to gradient update deficiency: low-ranked key-value pairs excluded during sparse training receive neither forward contribution nor backward gradients, and thus never learn proper suppression. To overcome this limitation, we propose SSA (Sparse Sparse Attention), a unified training framework that considers both sparse and full attention and enforces bidirectional alignment at every layer. This design preserves gradient flow to all tokens while explicitly encouraging sparse-attention outputs to align with their full-attention counterparts, thereby promoting stronger sparsity. As a result, SSA achieves state-of-the-art performance under both sparse and full attention inference across multiple commonsense benchmarks. Furthermore, SSA enables models to adapt smoothly to varying sparsity budgets; performance improves consistently as more tokens are allowed to attend, supporting flexible compute-performance trade-offs at inference time. Finally, we show that native sparse-attention training surprisingly improves long-context extrapolation by mitigating the over-allocation of attention values in sink areas, with SSA demonstrating the strongest extrapolation capability.

  • 7 authors
·
Nov 25, 2025 3

AILA--First Experiments with Localist Language Models

This paper presents the first empirical demonstration of controllable locality in transformer language models, a novel architectural framework that enables continuous control over the degree of representation localization through a tunable locality dial parameter. Unlike traditional language models that rely exclusively on distributed representations, our approach allows dynamic interpolation between highly interpretable localist encodings and efficient distributed representations without requiring model retraining. We conducted experiments on the WikiText corpus using a two-layer transformer architecture, systematically varying the locality parameter λ across the full spectrum from 1.0 (fully localist) to 0.0 (fully distributed). Our results demonstrate that localist configurations achieve dramatically lower attention entropy, with λ = 1.0 yielding 5.36 bits compared to 7.18 bits at λ = 0.0, while maintaining substantially higher pointer fidelity scores reflecting stronger alignment with rule-specified targets. Prediction experiments reveal that intermediate locality values optimize the tradeoff between interpretability and performance, with λ = 0.6 achieving test perplexity of 4.65 and accuracy of 84.7%. These findings establish that localist language models provide a practical framework for applications in regulated domains requiring both transparency and capability, offering precise mathematical control over the interpretability-performance spectrum through explicit penalty thresholds and information-theoretic design principles.

  • 1 authors
·
Nov 5, 2025

OAT: Object-Level Attention Transformer for Gaze Scanpath Prediction

Visual search is important in our daily life. The efficient allocation of visual attention is critical to effectively complete visual search tasks. Prior research has predominantly modelled the spatial allocation of visual attention in images at the pixel level, e.g. using a saliency map. However, emerging evidence shows that visual attention is guided by objects rather than pixel intensities. This paper introduces the Object-level Attention Transformer (OAT), which predicts human scanpaths as they search for a target object within a cluttered scene of distractors. OAT uses an encoder-decoder architecture. The encoder captures information about the position and appearance of the objects within an image and about the target. The decoder predicts the gaze scanpath as a sequence of object fixations, by integrating output features from both the encoder and decoder. We also propose a new positional encoding that better reflects spatial relationships between objects. We evaluated OAT on the Amazon book cover dataset and a new dataset for visual search that we collected. OAT's predicted gaze scanpaths align more closely with human gaze patterns, compared to predictions by algorithms based on spatial attention on both established metrics and a novel behavioural-based metric. Our results demonstrate the generalization ability of OAT, as it accurately predicts human scanpaths for unseen layouts and target objects.

  • 5 authors
·
Jul 18, 2024

FlexPrefill: A Context-Aware Sparse Attention Mechanism for Efficient Long-Sequence Inference

Large language models (LLMs) encounter computational challenges during long-sequence inference, especially in the attention pre-filling phase, where the complexity grows quadratically with the prompt length. Previous efforts to mitigate these challenges have relied on fixed sparse attention patterns or identifying sparse attention patterns based on limited cases. However, these methods lacked the flexibility to efficiently adapt to varying input demands. In this paper, we introduce FlexPrefill, a Flexible sparse Pre-filling mechanism that dynamically adjusts sparse attention patterns and computational budget in real-time to meet the specific requirements of each input and attention head. The flexibility of our method is demonstrated through two key innovations: 1) Query-Aware Sparse Pattern Determination: By measuring Jensen-Shannon divergence, this component adaptively switches between query-specific diverse attention patterns and predefined attention patterns. 2) Cumulative-Attention Based Index Selection: This component dynamically selects query-key indexes to be computed based on different attention patterns, ensuring the sum of attention scores meets a predefined threshold. FlexPrefill adaptively optimizes the sparse pattern and sparse ratio of each attention head based on the prompt, enhancing efficiency in long-sequence inference tasks. Experimental results show significant improvements in both speed and accuracy over prior methods, providing a more flexible and efficient solution for LLM inference.

  • 5 authors
·
Feb 28, 2025

SALE : Low-bit Estimation for Efficient Sparse Attention in Long-context LLM Prefilling

Many advanced Large Language Model (LLM) applications require long-context processing, but the self-attention module becomes a bottleneck during the prefilling stage of inference due to its quadratic time complexity with respect to sequence length. Existing sparse attention methods accelerate attention computation by skipping less significant regions of the attention map. However, these approaches typically perform coarse-grained inspection of the attention map, rendering considerable loss in model accuracy. In this paper, we propose SALE, a fine-grained sparse attention method that accelerates the long-context prefilling stage of LLM with negligible loss in model accuracy. SALE achieves fast and accurate fine-grained attention weight estimation through 4-bit quantized query-key products, followed by block-sparse attention to accelerate prefilling computations. For importance evaluation for query-key pairs, we adopt our Relative Attention Score metric, which offers significantly higher efficiency within our framework. We implement a custom CUDA kernel optimized for our approach for hardware efficiency, reducing the additional overhead to approximately 11% of the full attention latency. Notably, SALE requires no parameter training and can be seamlessly integrated into existing systems with trivial code modifications. Experiments on long-context benchmarks demonstrate that our method outperforms existing approaches in accuracy-efficiency trade-offs, achieving at least 3.36x speedups on Llama-3.1-8B for sequences longer than 64K while maintaining model quality.

  • 4 authors
·
May 29, 2025

The Linear Attention Resurrection in Vision Transformer

Vision Transformers (ViTs) have recently taken computer vision by storm. However, the softmax attention underlying ViTs comes with a quadratic complexity in time and memory, hindering the application of ViTs to high-resolution images. We revisit the attention design and propose a linear attention method to address the limitation, which doesn't sacrifice ViT's core advantage of capturing global representation like existing methods (e.g. local window attention of Swin). We further investigate the key difference between linear attention and softmax attention. Our empirical results suggest that linear attention lacks a fundamental property of concentrating the distribution of the attention matrix. Inspired by this observation, we introduce a local concentration module to enhance linear attention. By incorporating enhanced linear global attention and local window attention, we propose a new ViT architecture, dubbed L^2ViT. Notably, L^2ViT can effectively capture both global interactions and local representations while enjoying linear computational complexity. Extensive experiments demonstrate the strong performance of L^2ViT. On image classification, L^2ViT achieves 84.4% Top-1 accuracy on ImageNet-1K without any extra training data or label. By further pre-training on ImageNet-22k, it attains 87.0% when fine-tuned with resolution 384^2. For downstream tasks, L^2ViT delivers favorable performance as a backbone on object detection as well as semantic segmentation.

  • 1 authors
·
Jan 27, 2025

SEA: Sparse Linear Attention with Estimated Attention Mask

The transformer architecture has driven breakthroughs in recent years on tasks which require modeling pairwise relationships between sequential elements, as is the case in natural language understanding. However, long seqeuences pose a problem due to the quadratic complexity of the attention operation. Previous research has aimed to lower the complexity by sparsifying or linearly approximating the attention matrix. Yet, these approaches cannot straightforwardly distill knowledge from a teacher's attention matrix and often require complete retraining from scratch. Furthermore, previous sparse and linear approaches lose interpretability if they cannot produce full attention matrices. To address these challenges, we propose SEA: Sparse linear attention with an Estimated Attention mask. SEA estimates the attention matrix with linear complexity via kernel-based linear attention, then subsequently creates a sparse attention matrix with a top-k selection to perform a sparse attention operation. For language modeling tasks (Wikitext2), previous linear and sparse attention methods show roughly two-fold worse perplexity scores over the quadratic OPT-1.3B baseline, while SEA achieves better perplexity than OPT-1.3B, using roughly half the memory of OPT-1.3B, providing interpretable attention matrix. We believe that our work will have a large practical impact, as it opens the possibility of running large transformers on resource-limited devices with less memory.

  • 4 authors
·
Oct 2, 2023

PSA: Pyramid Sparse Attention for Efficient Video Understanding and Generation

Attention mechanisms are the core of foundation models, but their quadratic complexity remains a critical bottleneck for scaling. This challenge has driven the development of efficient attention mechanisms, with sparsity emerging as the dominant paradigm. Current methods typically retain or discard entire key-value blocks with binary masks, resulting in substantial information loss under high sparsity. To mitigate this gap, we present Pyramid Sparse Attention (PSA), a versatile module applicable to both video understanding and generation tasks. Instead of binary masking, PSA introduces multi-level pooled KV representations, enabling finer mask granularity. Specifically, each query block dynamically allocates lower pooling levels to critical KV blocks and higher levels to less important ones, creating an informative interpolation between full retention and complete pruning. This design, analogous to fixed-point quantization and classical feature pyramid networks in computer vision, effectively mitigates information loss while preserving computational efficiency under a low compute budget. It works with a native, hardware-friendly kernel that leverages decoupled block-tile design to ensure efficient execution. Across video understanding and generation benchmarks, PSA preserves contextual information and visual fidelity, consistently outperforming or achieving comparable performance over existing sparse attention baselines with superior efficiency-quality trade-offs. Our code and model weights are publicly available at: http://ziplab.co/PSA

  • 5 authors
·
Dec 3, 2025 2

Flash Sparse Attention: An Alternative Efficient Implementation of Native Sparse Attention Kernel

Recent progress in sparse attention mechanisms has demonstrated strong potential for reducing the computational cost of long-context training and inference in large language models (LLMs). Native Sparse Attention (NSA), a state-of-the-art approach, introduces natively trainable, hardware-aligned sparse attention that delivers substantial system-level performance gains while maintaining accuracy comparable to full attention. However, the kernel implementation of NSA relies on a query-grouping strategy that is efficient only with large Grouped Query Attention (GQA) sizes, whereas modern LLMs typically adopt much smaller GQA groups, which limits the applicability of this sparse algorithmic advance. In this work, we propose Flash Sparse Attention (FSA), which includes an alternative kernel design that enables efficient NSA computation across a wide range of popular LLMs with varied smaller GQA group sizes on modern GPUs. Compared to vanilla NSA kernel implementation, our empirical evaluation demonstrates that FSA achieves (i) up to 3.5times and on average 1.6times kernel-level latency reduction, (ii) up to 1.25times and 1.09times on average end-to-end training speedup on state-of-the-art LLMs, and (iii) up to 1.36times and 1.11times on average end-to-end prefill speedup on state-of-the-art LLMs. The source code is open-sourced and publicly available at https://github.com/Relaxed-System-Lab/Flash-Sparse-Attention.

  • 3 authors
·
Aug 25, 2025

HyLRA: Hybrid Layer Reuse Attention for Efficient Long-Context Inference

Long-context inference in Large Language Models (LLMs) is bottlenecked by the quadratic computation complexity of attention and the substantial memory footprint of Key-Value (KV) caches. While existing sparse attention mechanisms attempt to mitigate this by exploiting inherent sparsity, they often rely on rigid patterns or aggressive pruning, failing to achieve an optimal balance between efficiency and accuracy. In this paper, we introduce {\bf HyLRA} ({\bf Hy}brid {\bf L}ayer {\bf R}euse {\bf A}ttention), a novel framework driven by layer-wise sparsity profiling. Our empirical analysis uncovers a dual characteristic in attention mechanics: intra-layer sensitivity, where specific layers necessitate full attention to prevent feature distortion, and inter-layer similarity, where consecutive layers share substantial critical tokens. Based on these observations, HyLRA employs an offline dynamic programming approach to derive an optimal layer-wise policy. This hybrid strategy retains full attention for sensitive layers to ensure robustness, while enabling tolerant layers to bypass quadratic calculations by directly reusing top-k indices from preceding layers. This approach allows LLMs to restrict computation to the most critical tokens, effectively overcoming the quadratic bottleneck of dense attention. Extensive evaluations demonstrate that HyLRA improves inference throughput by 6\%--46\% while maintaining comparable performance (with <1% accuracy degradation), consistently outperforming state-of-the-art sparse attention methods. HyLRA is open source at https://anonymous.4open.science/r/unified-cache-management-CF80/{/r/unified-cache-management-CF80/}

  • 7 authors
·
Jan 31

MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention

The computational challenges of Large Language Model (LLM) inference remain a significant barrier to their widespread deployment, especially as prompt lengths continue to increase. Due to the quadratic complexity of the attention computation, it takes 30 minutes for an 8B LLM to process a prompt of 1M tokens (i.e., the pre-filling stage) on a single A100 GPU. Existing methods for speeding up prefilling often fail to maintain acceptable accuracy or efficiency when applied to long-context LLMs. To address this gap, we introduce MInference (Milliontokens Inference), a sparse calculation method designed to accelerate pre-filling of long-sequence processing. Specifically, we identify three unique patterns in long-context attention matrices-the A-shape, Vertical-Slash, and Block-Sparsethat can be leveraged for efficient sparse computation on GPUs. We determine the optimal pattern for each attention head offline and dynamically build sparse indices based on the assigned pattern during inference. With the pattern and sparse indices, we perform efficient sparse attention calculations via our optimized GPU kernels to significantly reduce the latency in the pre-filling stage of long-context LLMs. Our proposed technique can be directly applied to existing LLMs without any modifications to the pre-training setup or additional fine-tuning. By evaluating on a wide range of downstream tasks, including InfiniteBench, RULER, PG-19, and Needle In A Haystack, and models including LLaMA-3-1M, GLM4-1M, Yi-200K, Phi-3-128K, and Qwen2-128K, we demonstrate that MInference effectively reduces inference latency by up to 10x for pre-filling on an A100, while maintaining accuracy. Our code is available at https://aka.ms/MInference.

  • 12 authors
·
Jul 2, 2024 4

Catching the Details: Self-Distilled RoI Predictors for Fine-Grained MLLM Perception

Multimodal Large Language Models (MLLMs) require high-resolution visual information to perform fine-grained perception, yet processing entire high-resolution images is computationally prohibitive. While recent methods leverage a Region-of-Interest (RoI) mechanism to focus on salient areas, they typically present a difficult trade-off: training-based approaches depend on large-scale annotated datasets, while training-free methods that utilize the model's internal attention are computationally inefficient and less accurate, requiring either multi-pass prefill stages or reliance on the slow auto-regressive decoding process. In this paper, we propose an efficient, annotation-free Self-Distilled Region Proposal Network (SD-RPN) that resolves this trade-off. The SD-RPN is built around a pipeline that transforms the noisy attention maps from the MLLM's middle layers into high-quality pseudo-RoI labels by explicitly denoising the signal and resolving ambiguity. We use these labels to train a lightweight Region Proposal Network (RPN) that learns a more precise localization. This RPN is also highly efficient, predicting the RoI in a single forward pass using features from the MLLM's middle layers, decoupling RoI identification from the auto-regressive generation and avoiding costly multi-pass operations.To validate our approach, we integrate the framework into the LLaVA-1.5 architecture. Despite being trained on only a few (e.g. 10K) question-answer pairs, our method demonstrates exceptional data efficiency and generalization, achieving over a 10% absolute accuracy improvement on unseen benchmarks, including TextVQA, DocVQA, and V-Star. Our work presents a practical and scalable solution for enhancing the fine-grained perception of MLLMs without requiring costly supervision or full model fine-tuning. Code is available at https://github.com/YuHengsss/SD-RPN.