new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 17

Integrating Clinical Knowledge Graphs and Gradient-Based Neural Systems for Enhanced Melanoma Diagnosis via the 7-Point Checklist

The 7-point checklist (7PCL) is a widely used diagnostic tool in dermoscopy for identifying malignant melanoma by assigning point values to seven specific attributes. However, the traditional 7PCL is limited to distinguishing between malignant melanoma and melanocytic Nevi, and falls short in scenarios where multiple skin diseases with appearances similar to melanoma coexist. To address this limitation, we propose a novel diagnostic framework that integrates a clinical knowledge-based topological graph (CKTG) with a gradient diagnostic strategy featuring a data-driven weighting system (GD-DDW). The CKTG captures both the internal and external relationships among the 7PCL attributes, while the GD-DDW emulates dermatologists' diagnostic processes, prioritizing visual observation before making predictions. Additionally, we introduce a multimodal feature extraction approach leveraging a dual-attention mechanism to enhance feature extraction through cross-modal interaction and unimodal collaboration. This method incorporates meta-information to uncover interactions between clinical data and image features, ensuring more accurate and robust predictions. Our approach, evaluated on the EDRA dataset, achieved an average AUC of 88.6%, demonstrating superior performance in melanoma detection and feature prediction. This integrated system provides data-driven benchmarks for clinicians, significantly enhancing the precision of melanoma diagnosis.

  • 7 authors
·
Jul 23, 2024

BioGraphFusion: Graph Knowledge Embedding for Biological Completion and Reasoning

Motivation: Biomedical knowledge graphs (KGs) are crucial for drug discovery and disease understanding, yet their completion and reasoning are challenging. Knowledge Embedding (KE) methods capture global semantics but struggle with dynamic structural integration, while Graph Neural Networks (GNNs) excel locally but often lack semantic understanding. Even ensemble approaches, including those leveraging language models, often fail to achieve a deep, adaptive, and synergistic co-evolution between semantic comprehension and structural learning. Addressing this critical gap in fostering continuous, reciprocal refinement between these two aspects in complex biomedical KGs is paramount. Results: We introduce BioGraphFusion, a novel framework for deeply synergistic semantic and structural learning. BioGraphFusion establishes a global semantic foundation via tensor decomposition, guiding an LSTM-driven mechanism to dynamically refine relation embeddings during graph propagation. This fosters adaptive interplay between semantic understanding and structural learning, further enhanced by query-guided subgraph construction and a hybrid scoring mechanism. Experiments across three key biomedical tasks demonstrate BioGraphFusion's superior performance over state-of-the-art KE, GNN, and ensemble models. A case study on Cutaneous Malignant Melanoma 1 (CMM1) highlights its ability to unveil biologically meaningful pathways. Availability and Implementation: Source code and all training data are freely available for download at https://github.com/Y-TARL/BioGraphFusion. Supplementary information: Supplementary data are available at Bioinformatics online.

  • 6 authors
·
Jul 19, 2025

A Multimodal Vision Foundation Model for Clinical Dermatology

Diagnosing and treating skin diseases require advanced visual skills across domains and the ability to synthesize information from multiple imaging modalities. While current deep learning models excel at specific tasks like skin cancer diagnosis from dermoscopic images, they struggle to meet the complex, multimodal requirements of clinical practice. Here, we introduce PanDerm, a multimodal dermatology foundation model pretrained through self-supervised learning on over 2 million real-world skin disease images from 11 clinical institutions across 4 imaging modalities. We evaluated PanDerm on 28 diverse benchmarks, including skin cancer screening, risk stratification, differential diagnosis of common and rare skin conditions, lesion segmentation, longitudinal monitoring, and metastasis prediction and prognosis. PanDerm achieved state-of-the-art performance across all evaluated tasks, often outperforming existing models when using only 10% of labeled data. We conducted three reader studies to assess PanDerm's potential clinical utility. PanDerm outperformed clinicians by 10.2% in early-stage melanoma detection through longitudinal analysis, improved clinicians' skin cancer diagnostic accuracy by 11% on dermoscopy images, and enhanced non-dermatologist healthcare providers' differential diagnosis by 16.5% across 128 skin conditions on clinical photographs. These results demonstrate PanDerm's potential to improve patient care across diverse clinical scenarios and serve as a model for developing multimodal foundation models in other medical specialties, potentially accelerating the integration of AI support in healthcare. The code can be found at https://github.com/SiyuanYan1/PanDerm.

  • 25 authors
·
Oct 19, 2024

A system on chip for melanoma detection using FPGA-based SVM classifier

Support Vector Machine (SVM) is a robust machine learning model that shows high accuracy with different classification problems, and is widely used for various embedded applications. However , implementation of embedded SVM classifiers is challenging, due to the inherent complicated computations required. This motivates implementing the SVM on hardware platforms for achieving high performance computing at low cost and power consumption. Melanoma is the most aggressive form of skin cancer that increases the mortality rate. We aim to develop an optimized embedded SVM classifier dedicated for a low-cost handheld device for early detection of melanoma at the primary healthcare. In this paper, we propose a hardware/software co-design for implementing the SVM classifier onto FPGA to realize melanoma detection on a chip. The implemented SVM on a recent hybrid FPGA (Zynq) platform utilizing the modern UltraFast High-Level Synthesis design methodology achieves efficient melanoma classification on chip. The hardware implementation results demonstrate classification accuracy of 97.9%, and a significant hardware acceleration rate of 21 with only 3% resources utilization and 1.69W for power consumption. These results show that the implemented system on chip meets crucial embedded system constraints of high performance and low resources utilization, power consumption, and cost, while achieving efficient classification with high classification accuracy.

  • 3 authors
·
Sep 30, 2021

Attention Swin U-Net: Cross-Contextual Attention Mechanism for Skin Lesion Segmentation

Melanoma is caused by the abnormal growth of melanocytes in human skin. Like other cancers, this life-threatening skin cancer can be treated with early diagnosis. To support a diagnosis by automatic skin lesion segmentation, several Fully Convolutional Network (FCN) approaches, specifically the U-Net architecture, have been proposed. The U-Net model with a symmetrical architecture has exhibited superior performance in the segmentation task. However, the locality restriction of the convolutional operation incorporated in the U-Net architecture limits its performance in capturing long-range dependency, which is crucial for the segmentation task in medical images. To address this limitation, recently a Transformer based U-Net architecture that replaces the CNN blocks with the Swin Transformer module has been proposed to capture both local and global representation. In this paper, we propose Att-SwinU-Net, an attention-based Swin U-Net extension, for medical image segmentation. In our design, we seek to enhance the feature re-usability of the network by carefully designing the skip connection path. We argue that the classical concatenation operation utilized in the skip connection path can be further improved by incorporating an attention mechanism. By performing a comprehensive ablation study on several skin lesion segmentation datasets, we demonstrate the effectiveness of our proposed attention mechanism.

  • 4 authors
·
Oct 30, 2022

Relationship between pulmonary nodule malignancy and surrounding pleurae, airways and vessels: a quantitative study using the public LIDC-IDRI dataset

To investigate whether the pleurae, airways and vessels surrounding a nodule on non-contrast computed tomography (CT) can discriminate benign and malignant pulmonary nodules. The LIDC-IDRI dataset, one of the largest publicly available CT database, was exploited for study. A total of 1556 nodules from 694 patients were involved in statistical analysis, where nodules with average scorings <3 and >3 were respectively denoted as benign and malignant. Besides, 339 nodules from 113 patients with diagnosis ground-truth were independently evaluated. Computer algorithms were developed to segment pulmonary structures and quantify the distances to pleural surface, airways and vessels, as well as the counting number and normalized volume of airways and vessels near a nodule. Odds ratio (OR) and Chi-square (\chi^2) testing were performed to demonstrate the correlation between features of surrounding structures and nodule malignancy. A non-parametric receiver operating characteristic (ROC) analysis was conducted in logistic regression to evaluate discrimination ability of each structure. For benign and malignant groups, the average distances from nodules to pleural surface, airways and vessels are respectively (6.56, 5.19), (37.08, 26.43) and (1.42, 1.07) mm. The correlation between nodules and the counting number of airways and vessels that contact or project towards nodules are respectively (OR=22.96, \chi^2=105.04) and (OR=7.06, \chi^2=290.11). The correlation between nodules and the volume of airways and vessels are (OR=9.19, \chi^2=159.02) and (OR=2.29, \chi^2=55.89). The areas-under-curves (AUCs) for pleurae, airways and vessels are respectively 0.5202, 0.6943 and 0.6529. Our results show that malignant nodules are often surrounded by more pulmonary structures compared with benign ones, suggesting that features of these structures could be viewed as lung cancer biomarkers.

  • 8 authors
·
Jun 24, 2021

Breast Cancer Detection and Diagnosis: A comparative study of state-of-the-arts deep learning architectures

Breast cancer is a prevalent form of cancer among women, with over 1.5 million women being diagnosed each year. Unfortunately, the survival rates for breast cancer patients in certain third-world countries, like South Africa, are alarmingly low, with only 40% of diagnosed patients surviving beyond five years. The inadequate availability of resources, including qualified pathologists, delayed diagnoses, and ineffective therapy planning, contribute to this low survival rate. To address this pressing issue, medical specialists and researchers have turned to domain-specific AI approaches, specifically deep learning models, to develop end-to-end solutions that can be integrated into computer-aided diagnosis (CAD) systems. By improving the workflow of pathologists, these AI models have the potential to enhance the detection and diagnosis of breast cancer. This research focuses on evaluating the performance of various cutting-edge convolutional neural network (CNN) architectures in comparison to a relatively new model called the Vision Trans-former (ViT). The objective is to determine the superiority of these models in terms of their accuracy and effectiveness. The experimental results reveal that the ViT models outperform the other selected state-of-the-art CNN architectures, achieving an impressive accuracy rate of 95.15%. This study signifies a significant advancement in the field, as it explores the utilization of data augmentation and other relevant preprocessing techniques in conjunction with deep learning models for the detection and diagnosis of breast cancer using datasets of Breast Cancer Histopathological Image Classification.

  • 2 authors
·
May 31, 2023

Skin disease diagnosis with deep learning: a review

Skin cancer is one of the most threatening diseases worldwide. However, diagnosing skin cancer correctly is challenging. Recently, deep learning algorithms have emerged to achieve excellent performance on various tasks. Particularly, they have been applied to the skin disease diagnosis tasks. In this paper, we present a review on deep learning methods and their applications in skin disease diagnosis. We first present a brief introduction to skin diseases and image acquisition methods in dermatology, and list several publicly available skin datasets for training and testing algorithms. Then, we introduce the conception of deep learning and review popular deep learning architectures. Thereafter, popular deep learning frameworks facilitating the implementation of deep learning algorithms and performance evaluation metrics are presented. As an important part of this article, we then review the literature involving deep learning methods for skin disease diagnosis from several aspects according to the specific tasks. Additionally, we discuss the challenges faced in the area and suggest possible future research directions. The major purpose of this article is to provide a conceptual and systematically review of the recent works on skin disease diagnosis with deep learning. Given the popularity of deep learning, there remains great challenges in the area, as well as opportunities that we can explore in the future.

  • 4 authors
·
Nov 11, 2020 2

A Flexible Parametric Modelling Framework for Survival Analysis

We introduce a general, flexible, parametric survival modelling framework which encompasses key shapes of hazard function (constant, increasing, decreasing, up-then-down, down-then-up), various common survival distributions (log-logistic, Burr type XII, Weibull, Gompertz), and includes defective distributions (i.e., cure models). This generality is achieved using four basic distributional parameters: two scale-type parameters and two shape parameters. Generalising to covariate dependence, the scale-type regression components correspond to accelerated failure time (AFT) and proportional hazards (PH) models. Therefore, this general formulation unifies the most popular survival models which allows us to consider the practical value of possible modelling choices for survival data. Furthermore, in line with our proposed flexible baseline distribution, we advocate the use of multi-parameter regression in which more than one distributional parameter depends on covariates - rather than the usual convention of having a single covariate-dependent (scale) parameter. While many choices are available, we suggest introducing covariates through just one or other of the two scale parameters, which covers AFT and PH models, in combination with a `power' shape parameter, which allows for more complex non-AFT/non-PH effects, while the other shape parameter remains covariate-independent, and handles automatic selection of the baseline distribution. We explore inferential issues in simulations, both with and without a covariate, with particular focus on evidence concerning the need, or otherwise, to include both AFT and PH parameters. We illustrate the efficacy of our modelling framework by investigating differences between treatment groups using data from a lung cancer study and a melanoma study. Censoring is accommodated throughout.

  • 3 authors
·
Jan 10, 2019

Enhancing Skin Disease Diagnosis: Interpretable Visual Concept Discovery with SAM

Current AI-assisted skin image diagnosis has achieved dermatologist-level performance in classifying skin cancer, driven by rapid advancements in deep learning architectures. However, unlike traditional vision tasks, skin images in general present unique challenges due to the limited availability of well-annotated datasets, complex variations in conditions, and the necessity for detailed interpretations to ensure patient safety. Previous segmentation methods have sought to reduce image noise and enhance diagnostic performance, but these techniques require fine-grained, pixel-level ground truth masks for training. In contrast, with the rise of foundation models, the Segment Anything Model (SAM) has been introduced to facilitate promptable segmentation, enabling the automation of the segmentation process with simple yet effective prompts. Efforts applying SAM predominantly focus on dermatoscopy images, which present more easily identifiable lesion boundaries than clinical photos taken with smartphones. This limitation constrains the practicality of these approaches to real-world applications. To overcome the challenges posed by noisy clinical photos acquired via non-standardized protocols and to improve diagnostic accessibility, we propose a novel Cross-Attentive Fusion framework for interpretable skin lesion diagnosis. Our method leverages SAM to generate visual concepts for skin diseases using prompts, integrating local visual concepts with global image features to enhance model performance. Extensive evaluation on two skin disease datasets demonstrates our proposed method's effectiveness on lesion diagnosis and interpretability.

  • 5 authors
·
Sep 14, 2024

Ugly Ducklings or Swans: A Tiered Quadruplet Network with Patient-Specific Mining for Improved Skin Lesion Classification

An ugly duckling is an obviously different skin lesion from surrounding lesions of an individual, and the ugly duckling sign is a criterion used to aid in the diagnosis of cutaneous melanoma by differentiating between highly suspicious and benign lesions. However, the appearance of pigmented lesions, can change drastically from one patient to another, resulting in difficulties in visual separation of ugly ducklings. Hence, we propose DMT-Quadruplet - a deep metric learning network to learn lesion features at two tiers - patient-level and lesion-level. We introduce a patient-specific quadruplet mining approach together with a tiered quadruplet network, to drive the network to learn more contextual information both globally and locally between the two tiers. We further incorporate a dynamic margin within the patient-specific mining to allow more useful quadruplets to be mined within individuals. Comprehensive experiments show that our proposed method outperforms traditional classifiers, achieving 54% higher sensitivity than a baseline ResNet18 CNN and 37% higher than a naive triplet network in classifying ugly duckling lesions. Visualisation of the data manifold in the metric space further illustrates that DMT-Quadruplet is capable of classifying ugly duckling lesions in both patient-specific and patient-agnostic manner successfully.

  • 7 authors
·
Sep 18, 2023

Melanoma Detection using Adversarial Training and Deep Transfer Learning

Skin lesion datasets consist predominantly of normal samples with only a small percentage of abnormal ones, giving rise to the class imbalance problem. Also, skin lesion images are largely similar in overall appearance owing to the low inter-class variability. In this paper, we propose a two-stage framework for automatic classification of skin lesion images using adversarial training and transfer learning toward melanoma detection. In the first stage, we leverage the inter-class variation of the data distribution for the task of conditional image synthesis by learning the inter-class mapping and synthesizing under-represented class samples from the over-represented ones using unpaired image-to-image translation. In the second stage, we train a deep convolutional neural network for skin lesion classification using the original training set combined with the newly synthesized under-represented class samples. The training of this classifier is carried out by minimizing the focal loss function, which assists the model in learning from hard examples, while down-weighting the easy ones. Experiments conducted on a dermatology image benchmark demonstrate the superiority of our proposed approach over several standard baseline methods, achieving significant performance improvements. Interestingly, we show through feature visualization and analysis that our method leads to context based lesion assessment that can reach an expert dermatologist level.

  • 2 authors
·
Apr 14, 2020

CPKD: Clinical Prior Knowledge-Constrained Diffusion Models for Surgical Phase Recognition in Endoscopic Submucosal Dissection

Gastrointestinal malignancies constitute a leading cause of cancer-related mortality worldwide, with advanced-stage prognosis remaining particularly dismal. Originating as a groundbreaking technique for early gastric cancer treatment, Endoscopic Submucosal Dissection has evolved into a versatile intervention for diverse gastrointestinal lesions. While computer-assisted systems significantly enhance procedural precision and safety in ESD, their clinical adoption faces a critical bottleneck: reliable surgical phase recognition within complex endoscopic workflows. Current state-of-the-art approaches predominantly rely on multi-stage refinement architectures that iteratively optimize temporal predictions. In this paper, we present Clinical Prior Knowledge-Constrained Diffusion (CPKD), a novel generative framework that reimagines phase recognition through denoising diffusion principles while preserving the core iterative refinement philosophy. This architecture progressively reconstructs phase sequences starting from random noise and conditioned on visual-temporal features. To better capture three domain-specific characteristics, including positional priors, boundary ambiguity, and relation dependency, we design a conditional masking strategy. Furthermore, we incorporate clinical prior knowledge into the model training to improve its ability to correct phase logical errors. Comprehensive evaluations on ESD820, Cholec80, and external multi-center demonstrate that our proposed CPKD achieves superior or comparable performance to state-of-the-art approaches, validating the effectiveness of diffusion-based generative paradigms for surgical phase recognition.

  • 7 authors
·
Jul 4, 2025

Towards a deep learning approach for classifying treatment response in glioblastomas

Glioblastomas are the most aggressive type of glioma, having a 5-year survival rate of 6.9%. Treatment typically involves surgery, followed by radiotherapy and chemotherapy, and frequent magnetic resonance imaging (MRI) scans to monitor disease progression. To assess treatment response, radiologists use the Response Assessment in Neuro-Oncology (RANO) criteria to categorize the tumor into one of four labels based on imaging and clinical features: complete response, partial response, stable disease, and progressive disease. This assessment is very complex and time-consuming. Since deep learning (DL) has been widely used to tackle classification problems, this work aimed to implement the first DL pipeline for the classification of RANO criteria based on two consecutive MRI acquisitions. The models were trained and tested on the open dataset LUMIERE. Five approaches were tested: 1) subtraction of input images, 2) different combinations of modalities, 3) different model architectures, 4) different pretraining tasks, and 5) adding clinical data. The pipeline that achieved the best performance used a Densenet264 considering only T1-weighted, T2-weighted, and Fluid Attenuated Inversion Recovery (FLAIR) images as input without any pretraining. A median Balanced Accuracy of 50.96% was achieved. Additionally, explainability methods were applied. Using Saliency Maps, the tumor region was often successfully highlighted. In contrast, Grad-CAM typically failed to highlight the tumor region, with some exceptions observed in the Complete Response and Progressive Disease classes, where it effectively identified the tumor region. These results set a benchmark for future studies on glioblastoma treatment response assessment based on the RANO criteria while emphasizing the heterogeneity of factors that might play a role when assessing the tumor's response to treatment.

  • 6 authors
·
Apr 25, 2025

A Web-based Mpox Skin Lesion Detection System Using State-of-the-art Deep Learning Models Considering Racial Diversity

The recent 'Mpox' outbreak, formerly known as 'Monkeypox', has become a significant public health concern and has spread to over 110 countries globally. The challenge of clinically diagnosing mpox early on is due, in part, to its similarity to other types of rashes. Computer-aided screening tools have been proven valuable in cases where Polymerase Chain Reaction (PCR) based diagnosis is not immediately available. Deep learning methods are powerful in learning complex data representations, but their efficacy largely depends on adequate training data. To address this challenge, we present the "Mpox Skin Lesion Dataset Version 2.0 (MSLD v2.0)" as a follow-up to the previously released openly accessible dataset, one of the first datasets containing mpox lesion images. This dataset contains images of patients with mpox and five other non-mpox classes (chickenpox, measles, hand-foot-mouth disease, cowpox, and healthy). We benchmark the performance of several state-of-the-art deep learning models, including VGG16, ResNet50, DenseNet121, MobileNetV2, EfficientNetB3, InceptionV3, and Xception, to classify mpox and other infectious skin diseases. In order to reduce the impact of racial bias, we utilize a color space data augmentation method to increase skin color variability during training. Additionally, by leveraging transfer learning implemented with pre-trained weights generated from the HAM10000 dataset, an extensive collection of pigmented skin lesion images, we achieved the best overall accuracy of 83.59pm2.11%. Finally, the developed models are incorporated within a prototype web application to analyze uploaded skin images by a user and determine whether a subject is a suspected mpox patient.

  • 8 authors
·
Jun 25, 2023

A Retrospective Systematic Study on Hierarchical Sparse Query Transformer-assisted Ultrasound Screening for Early Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC), ranking as the third leading cause of cancer-related mortality worldwide, demands urgent improvements in early detection to enhance patient survival. While ultrasound remains the preferred screening modality due to its cost-effectiveness and real-time capabilities, its sensitivity (59%-78%) heavily relies on radiologists' expertise, leading to inconsistent diagnostic outcomes and operational inefficiencies. Recent advancements in AI technology offer promising solutions to bridge this gap. This study introduces the Hierarchical Sparse Query Transformer (HSQformer), a novel hybrid architecture that synergizes CNNs' local feature extraction with Vision Transformers' global contextual awareness through latent space representation and sparse learning. By dynamically activating task-specific experts via a Mixture-of-Experts (MoE) framework, HSQformer achieves hierarchical feature integration without structural redundancy. Evaluated across three clinical scenarios: single-center, multi-center, and high-risk patient cohorts, HSQformer outperforms state-of-the-art models (e.g., 95.38% AUC in multi-center testing) and matches senior radiologists' diagnostic accuracy while significantly surpassing junior counterparts. These results highlight the potential of AI-assisted tools to standardize HCC screening, reduce dependency on human expertise, and improve early diagnosis rates. The full code is available at https://github.com/Asunatan/HSQformer.

  • 11 authors
·
Feb 5, 2025

Scaling Artificial Intelligence for Multi-Tumor Early Detection with More Reports, Fewer Masks

Early tumor detection save lives. Each year, more than 300 million computed tomography (CT) scans are performed worldwide, offering a vast opportunity for effective cancer screening. However, detecting small or early-stage tumors on these CT scans remains challenging, even for experts. Artificial intelligence (AI) models can assist by highlighting suspicious regions, but training such models typically requires extensive tumor masks--detailed, voxel-wise outlines of tumors manually drawn by radiologists. Drawing these masks is costly, requiring years of effort and millions of dollars. In contrast, nearly every CT scan in clinical practice is already accompanied by medical reports describing the tumor's size, number, appearance, and sometimes, pathology results--information that is rich, abundant, and often underutilized for AI training. We introduce R-Super, which trains AI to segment tumors that match their descriptions in medical reports. This approach scales AI training with large collections of readily available medical reports, substantially reducing the need for manually drawn tumor masks. When trained on 101,654 reports, AI models achieved performance comparable to those trained on 723 masks. Combining reports and masks further improved sensitivity by +13% and specificity by +8%, surpassing radiologists in detecting five of the seven tumor types. Notably, R-Super enabled segmentation of tumors in the spleen, gallbladder, prostate, bladder, uterus, and esophagus, for which no public masks or AI models previously existed. This study challenges the long-held belief that large-scale, labor-intensive tumor mask creation is indispensable, establishing a scalable and accessible path toward early detection across diverse tumor types. We plan to release our trained models, code, and dataset at https://github.com/MrGiovanni/R-Super

  • 23 authors
·
Oct 16, 2025

On the Importance of Text Preprocessing for Multimodal Representation Learning and Pathology Report Generation

Vision-language models in pathology enable multimodal case retrieval and automated report generation. Many of the models developed so far, however, have been trained on pathology reports that include information which cannot be inferred from paired whole slide images (e.g., patient history), potentially leading to hallucinated sentences in generated reports. To this end, we investigate how the selection of information from pathology reports for vision-language modeling affects the quality of the multimodal representations and generated reports. More concretely, we compare a model trained on full reports against a model trained on preprocessed reports that only include sentences describing the cell and tissue appearances based on the H&E-stained slides. For the experiments, we built upon the BLIP-2 framework and used a cutaneous melanocytic lesion dataset of 42,433 H&E-stained whole slide images and 19,636 corresponding pathology reports. Model performance was assessed using image-to-text and text-to-image retrieval, as well as qualitative evaluation of the generated reports by an expert pathologist. Our results demonstrate that text preprocessing prevents hallucination in report generation. Despite the improvement in the quality of the generated reports, training the vision-language model on full reports showed better cross-modal retrieval performance.

  • 6 authors
·
Feb 26, 2025

A Novel Self-Learning Framework for Bladder Cancer Grading Using Histopathological Images

Recently, bladder cancer has been significantly increased in terms of incidence and mortality. Currently, two subtypes are known based on tumour growth: non-muscle invasive (NMIBC) and muscle-invasive bladder cancer (MIBC). In this work, we focus on the MIBC subtype because it is of the worst prognosis and can spread to adjacent organs. We present a self-learning framework to grade bladder cancer from histological images stained via immunohistochemical techniques. Specifically, we propose a novel Deep Convolutional Embedded Attention Clustering (DCEAC) which allows classifying histological patches into different severity levels of the disease, according to the patterns established in the literature. The proposed DCEAC model follows a two-step fully unsupervised learning methodology to discern between non-tumour, mild and infiltrative patterns from high-resolution samples of 512x512 pixels. Our system outperforms previous clustering-based methods by including a convolutional attention module, which allows refining the features of the latent space before the classification stage. The proposed network exceeds state-of-the-art approaches by 2-3% across different metrics, achieving a final average accuracy of 0.9034 in a multi-class scenario. Furthermore, the reported class activation maps evidence that our model is able to learn by itself the same patterns that clinicians consider relevant, without incurring prior annotation steps. This fact supposes a breakthrough in muscle-invasive bladder cancer grading which bridges the gap with respect to train the model on labelled data.

  • 5 authors
·
Jun 25, 2021

A deep learning system for differential diagnosis of skin diseases

Skin conditions affect an estimated 1.9 billion people worldwide. A shortage of dermatologists causes long wait times and leads patients to seek dermatologic care from general practitioners. However, the diagnostic accuracy of general practitioners has been reported to be only 0.24-0.70 (compared to 0.77-0.96 for dermatologists), resulting in referral errors, delays in care, and errors in diagnosis and treatment. In this paper, we developed a deep learning system (DLS) to provide a differential diagnosis of skin conditions for clinical cases (skin photographs and associated medical histories). The DLS distinguishes between 26 skin conditions that represent roughly 80% of the volume of skin conditions seen in primary care. The DLS was developed and validated using de-identified cases from a teledermatology practice serving 17 clinical sites via a temporal split: the first 14,021 cases for development and the last 3,756 cases for validation. On the validation set, where a panel of three board-certified dermatologists defined the reference standard for every case, the DLS achieved 0.71 and 0.93 top-1 and top-3 accuracies respectively. For a random subset of the validation set (n=963 cases), 18 clinicians reviewed the cases for comparison. On this subset, the DLS achieved a 0.67 top-1 accuracy, non-inferior to board-certified dermatologists (0.63, p<0.001), and higher than primary care physicians (PCPs, 0.45) and nurse practitioners (NPs, 0.41). The top-3 accuracy showed a similar trend: 0.90 DLS, 0.75 dermatologists, 0.60 PCPs, and 0.55 NPs. These results highlight the potential of the DLS to augment general practitioners to accurately diagnose skin conditions by suggesting differential diagnoses that may not have been considered. Future work will be needed to prospectively assess the clinical impact of using this tool in actual clinical workflows.

  • 22 authors
·
Sep 11, 2019

Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review

Cancer has relational information residing at varying scales, modalities, and resolutions of the acquired data, such as radiology, pathology, genomics, proteomics, and clinical records. Integrating diverse data types can improve the accuracy and reliability of cancer diagnosis and treatment. There can be disease-related information that is too subtle for humans or existing technological tools to discern visually. Traditional methods typically focus on partial or unimodal information about biological systems at individual scales and fail to encapsulate the complete spectrum of the heterogeneous nature of data. Deep neural networks have facilitated the development of sophisticated multimodal data fusion approaches that can extract and integrate relevant information from multiple sources. Recent deep learning frameworks such as Graph Neural Networks (GNNs) and Transformers have shown remarkable success in multimodal learning. This review article provides an in-depth analysis of the state-of-the-art in GNNs and Transformers for multimodal data fusion in oncology settings, highlighting notable research studies and their findings. We also discuss the foundations of multimodal learning, inherent challenges, and opportunities for integrative learning in oncology. By examining the current state and potential future developments of multimodal data integration in oncology, we aim to demonstrate the promising role that multimodal neural networks can play in cancer prevention, early detection, and treatment through informed oncology practices in personalized settings.

  • 5 authors
·
Mar 11, 2023

Text-Driven Tumor Synthesis

Tumor synthesis can generate examples that AI often misses or over-detects, improving AI performance by training on these challenging cases. However, existing synthesis methods, which are typically unconditional -- generating images from random variables -- or conditioned only by tumor shapes, lack controllability over specific tumor characteristics such as texture, heterogeneity, boundaries, and pathology type. As a result, the generated tumors may be overly similar or duplicates of existing training data, failing to effectively address AI's weaknesses. We propose a new text-driven tumor synthesis approach, termed TextoMorph, that provides textual control over tumor characteristics. This is particularly beneficial for examples that confuse the AI the most, such as early tumor detection (increasing Sensitivity by +8.5%), tumor segmentation for precise radiotherapy (increasing DSC by +6.3%), and classification between benign and malignant tumors (improving Sensitivity by +8.2%). By incorporating text mined from radiology reports into the synthesis process, we increase the variability and controllability of the synthetic tumors to target AI's failure cases more precisely. Moreover, TextoMorph uses contrastive learning across different texts and CT scans, significantly reducing dependence on scarce image-report pairs (only 141 pairs used in this study) by leveraging a large corpus of 34,035 radiology reports. Finally, we have developed rigorous tests to evaluate synthetic tumors, including Text-Driven Visual Turing Test and Radiomics Pattern Analysis, showing that our synthetic tumors is realistic and diverse in texture, heterogeneity, boundaries, and pathology.

  • 14 authors
·
Dec 24, 2024

Crowdsourcing Dermatology Images with Google Search Ads: Creating a Real-World Skin Condition Dataset

Background: Health datasets from clinical sources do not reflect the breadth and diversity of disease in the real world, impacting research, medical education, and artificial intelligence (AI) tool development. Dermatology is a suitable area to develop and test a new and scalable method to create representative health datasets. Methods: We used Google Search advertisements to invite contributions to an open access dataset of images of dermatology conditions, demographic and symptom information. With informed contributor consent, we describe and release this dataset containing 10,408 images from 5,033 contributions from internet users in the United States over 8 months starting March 2023. The dataset includes dermatologist condition labels as well as estimated Fitzpatrick Skin Type (eFST) and Monk Skin Tone (eMST) labels for the images. Results: We received a median of 22 submissions/day (IQR 14-30). Female (66.72%) and younger (52% < age 40) contributors had a higher representation in the dataset compared to the US population, and 32.6% of contributors reported a non-White racial or ethnic identity. Over 97.5% of contributions were genuine images of skin conditions. Dermatologist confidence in assigning a differential diagnosis increased with the number of available variables, and showed a weaker correlation with image sharpness (Spearman's P values <0.001 and 0.01 respectively). Most contributions were short-duration (54% with onset < 7 days ago ) and 89% were allergic, infectious, or inflammatory conditions. eFST and eMST distributions reflected the geographical origin of the dataset. The dataset is available at github.com/google-research-datasets/scin . Conclusion: Search ads are effective at crowdsourcing images of health conditions. The SCIN dataset bridges important gaps in the availability of representative images of common skin conditions.

  • 20 authors
·
Feb 28, 2024

Meta-information-aware Dual-path Transformer for Differential Diagnosis of Multi-type Pancreatic Lesions in Multi-phase CT

Pancreatic cancer is one of the leading causes of cancer-related death. Accurate detection, segmentation, and differential diagnosis of the full taxonomy of pancreatic lesions, i.e., normal, seven major types of lesions, and other lesions, is critical to aid the clinical decision-making of patient management and treatment. However, existing works focus on segmentation and classification for very specific lesion types (PDAC) or groups. Moreover, none of the previous work considers using lesion prevalence-related non-imaging patient information to assist the differential diagnosis. To this end, we develop a meta-information-aware dual-path transformer and exploit the feasibility of classification and segmentation of the full taxonomy of pancreatic lesions. Specifically, the proposed method consists of a CNN-based segmentation path (S-path) and a transformer-based classification path (C-path). The S-path focuses on initial feature extraction by semantic segmentation using a UNet-based network. The C-path utilizes both the extracted features and meta-information for patient-level classification based on stacks of dual-path transformer blocks that enhance the modeling of global contextual information. A large-scale multi-phase CT dataset of 3,096 patients with pathology-confirmed pancreatic lesion class labels, voxel-wise manual annotations of lesions from radiologists, and patient meta-information, was collected for training and evaluations. Our results show that our method can enable accurate classification and segmentation of the full taxonomy of pancreatic lesions, approaching the accuracy of the radiologist's report and significantly outperforming previous baselines. Results also show that adding the common meta-information, i.e., gender and age, can boost the model's performance, thus demonstrating the importance of meta-information for aiding pancreatic disease diagnosis.

  • 8 authors
·
Mar 1, 2023

Derm1M: A Million-scale Vision-Language Dataset Aligned with Clinical Ontology Knowledge for Dermatology

The emergence of vision-language models has transformed medical AI, enabling unprecedented advances in diagnostic capability and clinical applications. However, progress in dermatology has lagged behind other medical domains due to the lack of standard image-text pairs. Existing dermatological datasets are limited in both scale and depth, offering only single-label annotations across a narrow range of diseases instead of rich textual descriptions, and lacking the crucial clinical context needed for real-world applications. To address these limitations, we present Derm1M, the first large-scale vision-language dataset for dermatology, comprising 1,029,761 image-text pairs. Built from diverse educational resources and structured around a standard ontology collaboratively developed by experts, Derm1M provides comprehensive coverage for over 390 skin conditions across four hierarchical levels and 130 clinical concepts with rich contextual information such as medical history, symptoms, and skin tone. To demonstrate Derm1M potential in advancing both AI research and clinical application, we pretrained a series of CLIP-like models, collectively called DermLIP, on this dataset. The DermLIP family significantly outperforms state-of-the-art foundation models on eight diverse datasets across multiple tasks, including zero-shot skin disease classification, clinical and artifacts concept identification, few-shot/full-shot learning, and cross-modal retrieval. Our dataset and code will be public.

Monash University
·
Mar 19, 2025 2

Boosting Pathology Foundation Models via Few-shot Prompt-tuning for Rare Cancer Subtyping

Rare cancers comprise 20-25% of all malignancies but face major diagnostic challenges due to limited expert availability-especially in pediatric oncology, where they represent over 70% of cases. While pathology vision-language (VL) foundation models show promising zero-shot capabilities for common cancer subtyping, their clinical performance for rare cancers remains limited. Existing multi-instance learning (MIL) methods rely only on visual features, overlooking cross-modal knowledge and compromising interpretability critical for rare cancer diagnosis. To address this limitation, we propose PathPT, a novel framework that fully exploits the potential of vision-language pathology foundation models through spatially-aware visual aggregation and task-specific prompt tuning. Unlike conventional MIL, PathPT converts WSI-level supervision into fine-grained tile-level guidance by leveraging the zero-shot capabilities of VL models, thereby preserving localization on cancerous regions and enabling cross-modal reasoning through prompts aligned with histopathological semantics. We benchmark PathPT on eight rare cancer datasets(four adult and four pediatric) spanning 56 subtypes and 2,910 WSIs, as well as three common cancer datasets, evaluating four state-of-the-art VL models and four MIL frameworks under three few-shot settings. Results show that PathPT consistently delivers superior performance, achieving substantial gains in subtyping accuracy and cancerous region grounding ability. This work advances AI-assisted diagnosis for rare cancers, offering a scalable solution for improving subtyping accuracy in settings with limited access to specialized expertise.

  • 14 authors
·
Aug 21, 2025

A Multimodal Knowledge-enhanced Whole-slide Pathology Foundation Model

Remarkable strides in computational pathology have been made in the task-agnostic foundation model that advances the performance of a wide array of downstream clinical tasks. Despite the promising performance, there are still several challenges. First, prior works have resorted to either vision-only or image-caption data, disregarding pathology reports with more clinically authentic information from pathologists and gene expression profiles which respectively offer distinct knowledge for versatile clinical applications. Second, the current progress in pathology FMs predominantly concentrates on the patch level, where the restricted context of patch-level pretraining fails to capture whole-slide patterns. Even recent slide-level FMs still struggle to provide whole-slide context for patch representation. In this study, for the first time, we develop a pathology foundation model incorporating three levels of modalities: pathology slides, pathology reports, and gene expression data, which resulted in 26,169 slide-level modality pairs from 10,275 patients across 32 cancer types, amounting to over 116 million pathological patch images. To leverage these data for CPath, we propose a novel whole-slide pretraining paradigm that injects the multimodal whole-slide context into the patch representation, called Multimodal Self-TAught PRetraining (mSTAR). The proposed paradigm revolutionizes the pretraining workflow for CPath, enabling the pathology FM to acquire the whole-slide context. To the best of our knowledge, this is the first attempt to incorporate three modalities at the whole-slide context for enhancing pathology FMs. To systematically evaluate the capabilities of mSTAR, we built the largest spectrum of oncological benchmark, spanning 7 categories of oncological applications in 15 types of 97 practical oncological tasks.

  • 19 authors
·
Jul 22, 2024

AI in Lung Health: Benchmarking Detection and Diagnostic Models Across Multiple CT Scan Datasets

Lung cancer remains the leading cause of cancer-related mortality worldwide, and early detection through low-dose computed tomography (LDCT) has shown significant promise in reducing death rates. With the growing integration of artificial intelligence (AI) into medical imaging, the development and evaluation of robust AI models require access to large, well-annotated datasets. In this study, we introduce the utility of Duke Lung Cancer Screening (DLCS) Dataset, the largest open-access LDCT dataset with over 2,000 scans and 3,000 expert-verified nodules. We benchmark deep learning models for both 3D nodule detection and lung cancer classification across internal and external datasets including LUNA16, LUNA25, and NLST-3D+. For detection, we develop two MONAI-based RetinaNet models (DLCSDmD and LUNA16-mD), evaluated using the Competition Performance Metric (CPM). For classification, we compare five models, including state-of-the-art pretrained models (Models Genesis, Med3D), a selfsupervised foundation model (FMCB), a randomly initialized ResNet50, and proposed a novel Strategic Warm-Start++ (SWS++) model. SWS++ uses curated candidate patches to pretrain a classification backbone within the same detection pipeline, enabling task-relevant feature learning. Our models demonstrated strong generalizability, with SWS++ achieving comparable or superior performance to existing foundational models across multiple datasets (AUC: 0.71 to 0.90). All code, models, and data are publicly released to promote reproducibility and collaboration. This work establishes a standardized benchmarking resource for lung cancer AI research, supporting future efforts in model development, validation, and clinical translation.

  • 7 authors
·
May 7, 2024

Can-SAVE: Deploying Low-Cost and Population-Scale Cancer Screening via Survival Analysis Variables and EHR

Conventional medical cancer screening methods are costly, labor-intensive, and extremely difficult to scale. Although AI can improve cancer detection, most systems rely on complex or specialized medical data, making them impractical for large-scale screening. We introduce Can-SAVE, a lightweight AI system that ranks population-wide cancer risks solely based on medical history events. By integrating survival model outputs into a gradient-boosting framework, our approach detects subtle, long-term patient risk patterns - often well before clinical symptoms manifest. Can-SAVE was rigorously evaluated on a real-world dataset of 2.5 million adults spanning five Russian regions, marking the study as one of the largest and most comprehensive deployments of AI-driven cancer risk assessment. In a retrospective oncologist-supervised study over 1.9M patients, Can-SAVE achieves a 4-10x higher detection rate at identical screening volumes and an Average Precision (AP) of 0.228 vs. 0.193 for the best baseline (LoRA-tuned Qwen3-Embeddings via DeepSeek-R1 summarization). In a year-long prospective pilot (426K patients), our method almost doubled the cancer detection rate (+91%) and increased population coverage by 36% over the national screening protocol. The system demonstrates practical scalability: a city-wide population of 1 million patients can be processed in under three hours using standard hardware, enabling seamless clinical integration. This work proves that Can-SAVE achieves nationally significant cancer detection improvements while adhering to real-world public healthcare constraints, offering immediate clinical utility and a replicable framework for population-wide screening. Code for training and feature engineering is available at https://github.com/sb-ai-lab/Can-SAVE.

sb-ai-lab
·
Sep 26, 2023

Memory-Augmented Incomplete Multimodal Survival Prediction via Cross-Slide and Gene-Attentive Hypergraph Learning

Multimodal pathology-genomic analysis is critical for cancer survival prediction. However, existing approaches predominantly integrate formalin-fixed paraffin-embedded (FFPE) slides with genomic data, while neglecting the availability of other preservation slides, such as Fresh Froze (FF) slides. Moreover, as the high-resolution spatial nature of pathology data tends to dominate the cross-modality fusion process, it hinders effective multimodal fusion and leads to modality imbalance challenges between pathology and genomics. These methods also typically require complete data modalities, limiting their clinical applicability with incomplete modalities, such as missing either pathology or genomic data. In this paper, we propose a multimodal survival prediction framework that leverages hypergraph learning to effectively integrate multi-WSI information and cross-modality interactions between pathology slides and genomics data while addressing modality imbalance. In addition, we introduce a memory mechanism that stores previously learned paired pathology-genomic features and dynamically compensates for incomplete modalities. Experiments on five TCGA datasets demonstrate that our model outperforms advanced methods by over 2.3% in C-Index. Under incomplete modality scenarios, our approach surpasses pathology-only (3.3%) and gene-only models (7.9%). Code: https://github.com/MCPathology/M2Surv

  • 7 authors
·
Jun 24, 2025

Prototypical Information Bottlenecking and Disentangling for Multimodal Cancer Survival Prediction

Multimodal learning significantly benefits cancer survival prediction, especially the integration of pathological images and genomic data. Despite advantages of multimodal learning for cancer survival prediction, massive redundancy in multimodal data prevents it from extracting discriminative and compact information: (1) An extensive amount of intra-modal task-unrelated information blurs discriminability, especially for gigapixel whole slide images (WSIs) with many patches in pathology and thousands of pathways in genomic data, leading to an ``intra-modal redundancy" issue. (2) Duplicated information among modalities dominates the representation of multimodal data, which makes modality-specific information prone to being ignored, resulting in an ``inter-modal redundancy" issue. To address these, we propose a new framework, Prototypical Information Bottlenecking and Disentangling (PIBD), consisting of Prototypical Information Bottleneck (PIB) module for intra-modal redundancy and Prototypical Information Disentanglement (PID) module for inter-modal redundancy. Specifically, a variant of information bottleneck, PIB, is proposed to model prototypes approximating a bunch of instances for different risk levels, which can be used for selection of discriminative instances within modality. PID module decouples entangled multimodal data into compact distinct components: modality-common and modality-specific knowledge, under the guidance of the joint prototypical distribution. Extensive experiments on five cancer benchmark datasets demonstrated our superiority over other methods.

  • 5 authors
·
Jan 3, 2024

Towards Understanding and Harnessing the Transferability of Prognostic Knowledge in Computational Pathology

Whole-Slide Image (WSI) is an important tool for evaluating the prognosis of cancer patients. Present WSI-based prognosis studies generally follow a conventional paradigm -- cancer-specific model development -- where one cancer disease corresponds to one model and this model cannot make use of the prognostic knowledge from others. Despite its notable success in recent years, this paradigm has inherent limitations and has always been struggling with practical requirements: (i) scaling to the rare tumor diseases with very limited samples and (ii) benefiting from the generalizable prognostic knowledge in other cancers. To this end, this paper presents the first systematic study on Prognostic Knowledge Transfer in Pathology, called Path-PKT. It comprises three main parts. (1) We curate a large dataset (UNI2-h-DSS) with 13 cancers and use it to evaluate the transferability of prognostic knowledge between different cancers computationally. (2) We design experiments to understand what factors affect knowledge transfer and what causes positive transfers. (3) Motivated by empirical findings, we propose a new baseline approach (MoE-PKT) with a routing mechanism to utilize the generalizable prognostic knowledge in other cancers. Finally, we show the transferability of source models to rare tumor diseases. This study could lay solid foundations for the study of knowledge transfer in WSI-based cancer prognosis. Source code is available at https://github.com/liupei101/Path-PKT.

  • 4 authors
·
Aug 18, 2025

Breast Cancer Diagnosis Using Machine Learning Techniques

Breast cancer is one of the most threatening diseases in women's life; thus, the early and accurate diagnosis plays a key role in reducing the risk of death in a patient's life. Mammography stands as the reference technique for breast cancer screening; nevertheless, many countries still lack access to mammograms due to economic, social, and cultural issues. Latest advances in computational tools, infrared cameras and devices for bio-impedance quantification, have given a chance to emerge other reference techniques like thermography, infrared thermography, electrical impedance tomography and biomarkers found in blood tests, therefore being faster, reliable and cheaper than other methods. In the last two decades, the techniques mentioned above have been considered as parallel and extended approaches for breast cancer diagnosis, as well many authors concluded that false positives and false negatives rates are significantly reduced. Moreover, when a screening method works together with a computational technique, it generates a "computer-aided diagnosis" system. The present work aims to review the last breakthroughs about the three techniques mentioned earlier, suggested machine learning techniques to breast cancer diagnosis, thus, describing the benefits of some methods in relation with other ones, such as, logistic regression, decision trees, random forest, deep and convolutional neural networks. With this, we studied several hyperparameters optimization approaches with parzen tree optimizers to improve the performance of baseline models. An exploratory data analysis for each database and a benchmark of convolutional neural networks for the database of thermal images are presented. The benchmark process, reviews image classification techniques with convolutional neural networks, like, Resnet50, NasNetmobile, InceptionResnet and Xception.

  • 1 authors
·
May 3, 2023 1

Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT

In the field of medical sciences, reliable detection and classification of brain tumors from images remains a formidable challenge due to the rarity of tumors within the population of patients. Therefore, the ability to detect tumors in anomaly scenarios is paramount for ensuring timely interventions and improved patient outcomes. This study addresses the issue by leveraging deep learning (DL) techniques to detect and classify brain tumors in challenging situations. The curated data set from the National Brain Mapping Lab (NBML) comprises 81 patients, including 30 Tumor cases and 51 Normal cases. The detection and classification pipelines are separated into two consecutive tasks. The detection phase involved comprehensive data analysis and pre-processing to modify the number of image samples and the number of patients of each class to anomaly distribution (9 Normal per 1 Tumor) to comply with real world scenarios. Next, in addition to common evaluation metrics for the testing, we employed a novel performance evaluation method called Patient to Patient (PTP), focusing on the realistic evaluation of the model. In the detection phase, we fine-tuned a YOLOv8n detection model to detect the tumor region. Subsequent testing and evaluation yielded competitive performance both in Common Evaluation Metrics and PTP metrics. Furthermore, using the Data Efficient Image Transformer (DeiT) module, we distilled a Vision Transformer (ViT) model from a fine-tuned ResNet152 as a teacher in the classification phase. This approach demonstrates promising strides in reliable tumor detection and classification, offering potential advancements in tumor diagnosis for real-world medical imaging scenarios.

  • 3 authors
·
Jan 6, 2024

The Role of AI in Early Detection of Life-Threatening Diseases: A Retinal Imaging Perspective

Retinal imaging has emerged as a powerful, non-invasive modality for detecting and quantifying biomarkers of systemic diseases-ranging from diabetes and hypertension to Alzheimer's disease and cardiovascular disorders but current insights remain dispersed across platforms and specialties. Recent technological advances in optical coherence tomography (OCT/OCTA) and adaptive optics (AO) now deliver ultra-high-resolution scans (down to 5 {\mu}m ) with superior contrast and spatial integration, allowing early identification of microvascular abnormalities and neurodegenerative changes. At the same time, AI-driven and machine learning (ML) algorithms have revolutionized the analysis of large-scale retinal datasets, increasing sensitivity and specificity; for example, deep learning models achieve > 90 \% sensitivity for diabetic retinopathy and AUC = 0.89 for the prediction of cardiovascular risk from fundus photographs. The proliferation of mobile health technologies and telemedicine platforms further extends access, reduces costs, and facilitates community-based screening and longitudinal monitoring. Despite these breakthroughs, translation into routine practice is hindered by heterogeneous imaging protocols, limited external validation of AI models, and integration challenges within clinical workflows. In this review, we systematically synthesize the latest OCT/OCT and AO developments, AI/ML approaches, and mHealth/Tele-ophthalmology initiatives and quantify their diagnostic performance across disease domains. Finally, we propose a roadmap for multicenter protocol standardization, prospective validation trials, and seamless incorporation of retinal screening into primary and specialty care pathways-paving the way for precision prevention, early intervention, and ongoing treatment of life-threatening systemic diseases.

  • 3 authors
·
May 27, 2025

A Multicenter Benchmark of Multiple Instance Learning Models for Lymphoma Subtyping from HE-stained Whole Slide Images

Timely and accurate lymphoma diagnosis is essential for guiding cancer treatment. Standard diagnostic practice combines hematoxylin and eosin (HE)-stained whole slide images with immunohistochemistry, flow cytometry, and molecular genetic tests to determine lymphoma subtypes, a process requiring costly equipment, skilled personnel, and causing treatment delays. Deep learning methods could assist pathologists by extracting diagnostic information from routinely available HE-stained slides, yet comprehensive benchmarks for lymphoma subtyping on multicenter data are lacking. In this work, we present the first multicenter lymphoma benchmarking dataset covering four common lymphoma subtypes and healthy control tissue. We systematically evaluate five publicly available pathology foundation models (H-optimus-1, H0-mini, Virchow2, UNI2, Titan) combined with attention-based (AB-MIL) and transformer-based (TransMIL) multiple instance learning aggregators across three magnifications (10x, 20x, 40x). On in-distribution test sets, models achieve multiclass balanced accuracies exceeding 80% across all magnifications, with all foundation models performing similarly and both aggregation methods showing comparable results. The magnification study reveals that 40x resolution is sufficient, with no performance gains from higher resolutions or cross-magnification aggregation. However, on out-of-distribution test sets, performance drops substantially to around 60%, highlighting significant generalization challenges. To advance the field, larger multicenter studies covering additional rare lymphoma subtypes are needed. We provide an automated benchmarking pipeline to facilitate such future research.

  • 13 authors
·
Dec 16, 2025

Coping with Information Loss and the Use of Auxiliary Sources of Data: A Report from the NISS Ingram Olkin Forum Series on Unplanned Clinical Trial Disruptions

Clinical trials disruption has always represented a non negligible part of the ending of interventional studies. While the SARS-CoV-2 (COVID-19) pandemic has led to an impressive and unprecedented initiation of clinical research, it has also led to considerable disruption of clinical trials in other disease areas, with around 80% of non-COVID-19 trials stopped or interrupted during the pandemic. In many cases the disrupted trials will not have the planned statistical power necessary to yield interpretable results. This paper describes methods to compensate for the information loss arising from trial disruptions by incorporating additional information available from auxiliary data sources. The methods described include the use of auxiliary data on baseline and early outcome data available from the trial itself and frequentist and Bayesian approaches for the incorporation of information from external data sources. The methods are illustrated by application to the analysis of artificial data based on the Primary care pediatrics Learning Activity Nutrition (PLAN) study, a clinical trial assessing a diet and exercise intervention for overweight children, that was affected by the COVID-19 pandemic. We show how all of the methods proposed lead to an increase in precision relative to use of complete case data only.

  • 12 authors
·
Jun 22, 2022

Histopathological Image Classification based on Self-Supervised Vision Transformer and Weak Labels

Whole Slide Image (WSI) analysis is a powerful method to facilitate the diagnosis of cancer in tissue samples. Automating this diagnosis poses various issues, most notably caused by the immense image resolution and limited annotations. WSIs commonly exhibit resolutions of 100Kx100K pixels. Annotating cancerous areas in WSIs on the pixel level is prohibitively labor-intensive and requires a high level of expert knowledge. Multiple instance learning (MIL) alleviates the need for expensive pixel-level annotations. In MIL, learning is performed on slide-level labels, in which a pathologist provides information about whether a slide includes cancerous tissue. Here, we propose Self-ViT-MIL, a novel approach for classifying and localizing cancerous areas based on slide-level annotations, eliminating the need for pixel-wise annotated training data. Self-ViT- MIL is pre-trained in a self-supervised setting to learn rich feature representation without relying on any labels. The recent Vision Transformer (ViT) architecture builds the feature extractor of Self-ViT-MIL. For localizing cancerous regions, a MIL aggregator with global attention is utilized. To the best of our knowledge, Self-ViT- MIL is the first approach to introduce self-supervised ViTs in MIL-based WSI analysis tasks. We showcase the effectiveness of our approach on the common Camelyon16 dataset. Self-ViT-MIL surpasses existing state-of-the-art MIL-based approaches in terms of accuracy and area under the curve (AUC).

  • 6 authors
·
Oct 17, 2022

Exploring Large Language Models for Specialist-level Oncology Care

Large language models (LLMs) have shown remarkable progress in encoding clinical knowledge and responding to complex medical queries with appropriate clinical reasoning. However, their applicability in subspecialist or complex medical settings remains underexplored. In this work, we probe the performance of AMIE, a research conversational diagnostic AI system, in the subspecialist domain of breast oncology care without specific fine-tuning to this challenging domain. To perform this evaluation, we curated a set of 50 synthetic breast cancer vignettes representing a range of treatment-naive and treatment-refractory cases and mirroring the key information available to a multidisciplinary tumor board for decision-making (openly released with this work). We developed a detailed clinical rubric for evaluating management plans, including axes such as the quality of case summarization, safety of the proposed care plan, and recommendations for chemotherapy, radiotherapy, surgery and hormonal therapy. To improve performance, we enhanced AMIE with the inference-time ability to perform web search retrieval to gather relevant and up-to-date clinical knowledge and refine its responses with a multi-stage self-critique pipeline. We compare response quality of AMIE with internal medicine trainees, oncology fellows, and general oncology attendings under both automated and specialist clinician evaluations. In our evaluations, AMIE outperformed trainees and fellows demonstrating the potential of the system in this challenging and important domain. We further demonstrate through qualitative examples, how systems such as AMIE might facilitate conversational interactions to assist clinicians in their decision making. However, AMIE's performance was overall inferior to attending oncologists suggesting that further research is needed prior to consideration of prospective uses.

  • 21 authors
·
Nov 5, 2024