import os import logging from functools import partial import hydra import torch import wandb from hydra.core.hydra_config import HydraConfig from hydra.utils import instantiate from lightning import seed_everything from omegaconf import DictConfig, OmegaConf from pdeinvbench.utils import validate_git_status from pdeinvbench.utils.config_utils import resolve_pde_resolution import sys import pdeinvbench # Add any other submodules you need @hydra.main( version_base=None, config_path="configs/", config_name="1dkdv", ) def main(cfg: DictConfig) -> None: # check git dirty status validate_git_status() hydra_cfg = HydraConfig.get() overrides = hydra_cfg.overrides.task overrides = [ override for override in overrides if "data_root" not in override and "batch_size" not in override and "logging.project" not in override and "logging.save_dir" not in override and "num_nodes" not in override and "log_model" not in override and "supervised_learning_min_epoch" not in override and "supervised_learning_max_epoch" not in override ] # First thing is to determine the constants resolve_pde_resolution(cfg) # Combine the config name with overrides: wandb_name = hydra_cfg.job["config_name"] + "_" + "_".join(overrides) # Fix random seed seed_everything(cfg.seed) # Define logger # Arguments for wandb.init wandb_args = OmegaConf.to_container( cfg.logging, resolve=True, throw_on_missing=True ) # Remove the _target_ key which usually points to the lightning logger wandb_args.pop("_target_") # Rename the save_dir key to dir, which is what wandb.init expects # We keep save_dir in cfg.logging so that we can still resolve the lightning wandb logger wandb_args["dir"] = wandb_args.pop("save_dir") cfg_as_dict = OmegaConf.to_container( cfg, resolve=True, throw_on_missing=True) # Manually instantiate the wandb experiment # We do this so that the wandb run is created with the correct parameters to recreate the run at the start. # Otherwise, the config is only saved at the end of the run. experiment = wandb.init(**wandb_args, name=wandb_name, config=cfg_as_dict) # Instantiate dataloaders train_dataloader = instantiate(cfg.data.train_dataloader) val_dataloaders = [] test_dataloaders = [] val_dataloader = instantiate(cfg.data.val_dataloader) val_dataloaders.append(val_dataloader) # to run validation set at test time as well with best weights test_dataloaders.append(val_dataloader) if "ood_dataloader" in cfg.data.keys() and os.path.exists(cfg.data.ood_data_root): print("ood loader") test_dataloaders.append(instantiate(cfg.data.ood_dataloader)) if "ood_dataloader_extreme" in cfg.data.keys() and os.path.exists( cfg.data.ood_data_root_extreme ): print("ood loader extreme") test_dataloaders.append(instantiate(cfg.data.ood_dataloader_extreme)) if "test_dataloader" in cfg.data.keys() and os.path.exists(cfg.data.test_data_root): print("test iid loader") test_dataloaders.append(instantiate(cfg.data.test_dataloader)) # Instantiate model and optimizer model = instantiate(cfg.model.model_config) if "inverse_model_wandb_run" in cfg.keys() and cfg.inverse_model_wandb_run != "": logging.info("Loading inverse model checkpoint from wandb") inverse_model_run_path = cfg.inverse_model_wandb_run artifact = experiment.use_artifact( inverse_model_run_path, type="model") checkpoint_path = os.path.join(artifact.download(), "model.ckpt") state_dict = torch.load(checkpoint_path, weights_only=False)[ "state_dict"] state_dict = {k.partition( "model.")[2]: v for k, v in state_dict.items()} model.load_state_dict(state_dict) optimizer = instantiate(cfg.optimizer, params=model.parameters()) lr_scheduler = instantiate(cfg.lr_scheduler, optimizer=optimizer) module_kwargs = { "model": model, "optimizer": optimizer, "lr_scheduler": lr_scheduler, } if "tailoring_optimizer" in cfg.keys(): # We use a partial function so that we can dynamically build new optimizers def tailoring_optimizer(x): return instantiate(cfg.tailoring_optimizer, params=x) module_kwargs["tailoring_optimizer"] = tailoring_optimizer else: tailoring_optimizer = None # Wraps the base model to perform prediction and losses if tailoring_optimizer != None: print(cfg.tailoring_optimizer) print("instantiate inverse module") Inverse_module = instantiate( cfg.lightning_module, **module_kwargs, ) print("instantiate inverse module done") # Instantiate the lightning logger & force the lightning logger to use the wandb experiment manually created log_model = "all" if "log_model" in cfg: log_model = cfg.log_model logger = instantiate( cfg.logging, experiment=experiment, log_model=log_model) logger._save_dir += "/" + \ cfg_as_dict["logging"]["project"] + "/" + wandb_name logger.watch(model, log="all") # Lightning trainer if tailoring_optimizer is not None: L_trainer = instantiate( cfg.trainer, logger=logger, inference_mode=False, ) else: L_trainer = instantiate(cfg.trainer, logger=logger) if "test_run" in cfg and cfg.test_run: L_trainer.test(model=Inverse_module, dataloaders=test_dataloaders, weights_only=False) else: # Train L_trainer.fit( Inverse_module, train_dataloaders=train_dataloader, val_dataloaders=val_dataloaders, ) L_trainer.test(dataloaders=test_dataloaders, ckpt_path="best", weights_only=False) if __name__ == "__main__": main()